Photodynamic therapy (PDT) has developed into a new clinical and non-invasive treatment for cancer over the past 30 years. By the combination of three non-toxic partners, i.e. a photosensitizer (PS), molecular oxygen (O) and light, cytotoxic reactive oxygen species (ROS) are locally produced leading to irreversible vascular and cellular damage. In the present study, we report for the first time that the combination of two photosensitizers (2 PSs: Protoporphyrin IX, PpIX and Hypericin, Hy) loaded in the same lipid nanocapsules (LNCs) leads to enhanced photodynamic therapy efficiency when compared with previously reported systems. The 2 PS-loaded LNCs are shown to increase the in vitro phototoxicity at the nanomolar range (IC = 274 and 278 nM on HeLa and MDA-MB-231 cell lines, respectively), whereas the corresponding single PS-loaded LNCs at the same concentration exhibit a phototoxicity two times lower. Intracellular localization in HeLa cells indicates a subcellular asymmetry of PpIX and Hy, in the plasma, ER membranes and round internal structures. The biodistribution of LNCs was studied upon different routes of injection into Swiss nude mice; based on the obtained data, LNCs were injected intratumorally and used to slow the growth of xenograft tumors in mice. The results obtained in this study suggest that the combination of two or more PSs may be a promising strategy to improve the efficacy of conventional photodynamic therapy as well as to reduce dark toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb01759jDOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
lipid nanocapsules
8
ps-loaded lncs
8
lncs
5
improved photodynamic
4
photodynamic encapsulation
4
encapsulation photosensitizers
4
photosensitizers lipid
4
nanocapsules photodynamic
4
therapy pdt
4

Similar Publications

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!