A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradable nanoparticles bearing amine groups as a strategy to alter surface features, biological identity and accumulation in a lung metastasis model. | LitMetric

AI Article Synopsis

  • Polymer-based cationic nanoparticles (NPs) can penetrate tumor tissues effectively and interact with cancer cell membranes, enhancing their potential as medical tools.
  • The study focuses on creating biodegradable cationic NPs from poly(ε-caprolactone) by modifying their surface with amine and PEG groups, which affects their stability and interaction with proteins.
  • Findings reveal that these modified NPs show specific cytotoxicity against lung cancer cells and improve drug delivery to tumor sites in mice, highlighting their promising role in chemotherapy.

Article Abstract

Polymer-based nanoparticles (NPs) with a cationic charge have emerged recently as a potent nanotool due to their unique ability to penetrate deeply inside tumor tissue and to interact preferentially with the plasma membrane of cancer cells. In this paper, we propose a general strategy to obtain biodegradable cationic NPs of poly(ε-caprolactone) (PCL) based on an amine terminated PCL (NH-PCL) or its mixture with monomethoxypoly(ethylene glycol)-PCL (mPEG-PCL). Positively-charged NPs were obtained, switching to net negative values through adsorption of low molecular weight hyaluronan. NPs exposing both amine and PEG groups on the surface showed a larger fixed aqueous layer thickness as compared to fully PEGylated NPs, suggesting that PEG conformation/localization is affected by the presence of amino groups. The stability of the positively-charged NPs was affected by the presence of ions, while interaction with the human plasma protein pool indicated time-dependent protein corona formation imparting an overall negative charge. NP-induced haemolysis was low, while cytotoxicity against A549 and Calu-3 lung cancer cell lines was cell-specific as well as dose and time-dependent. Finally, the presence of amino groups greatly changed the in vivo biodistribution of the NPs in tumor-bearing mice (lung colonization of B16F10 cancer cells) allowing the amine/PEGylated NPs to accumulate mainly at the target organ. Overall, this study demonstrates that NPs with a mixed amine/PEGylated surface exhibit a peculiar biological identity that alters their interaction with the bioenvironment and are thus worthy of further investigation in the delivery of chemotherapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb01330fDOI Listing

Publication Analysis

Top Keywords

nps
9
biological identity
8
cancer cells
8
positively-charged nps
8
presence amino
8
amino groups
8
biodegradable nanoparticles
4
nanoparticles bearing
4
bearing amine
4
groups
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!