Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model.

J Mater Chem B

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.

Published: January 2019

Nitroxyl (HNO) plays a crucial role in anti-inflammatory effects via the inhibition of inflammatory pathways, but the details of the endogenous generation of HNO still remain challenging owing to the complex biosynthetic pathways, in which the interaction between HS and NO simultaneously generates HNO and polysulfides (HS) in mitochondria. Moreover, nearly all the available fluorescent probes for HNO are utilized for imaging HNO in cells and tissues, instead of the in situ real-time detection of the simultaneous formation of HNO and HS in mitochondria and animals. Here, we have developed a mitochondria-targeting near-infrared fluorescent probe, namely, Mito-JN, to detect the generation of HNO in cells and a rat model. The probe consists of three moieties: Aza-BODIPY as a fluorescent signal transducer, a triphenylphosphonium cation as a mitochondria-targeting agent, and a diphenylphosphinobenzoyl group as an HNO-responsive unit. The response mechanism is based on an aza-ylide intramolecular ester aminolysis reaction with fluorescence emissions on. Mito-JN displays high selectivity and sensitivity for HNO over various other biologically relevant species. Mito-JN was successfully used for the detection of the endogenous generation of HNO, which is derived from the crosstalk between HS and NO in living cells. The additional generation of HS was also confirmed using our previous probe Cy-Mito. The anti-inflammatory effect of HNO was examined in a cell model of LPS-induced inflammation and a rat model of gouty arthritis. The results imply that our probe is a good candidate for the assessment of the protective effects of HNO in inflammatory processes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb02494dDOI Listing

Publication Analysis

Top Keywords

hno
12
generation hno
12
anti-inflammatory effects
8
effects hno
8
near-infrared fluorescent
8
fluorescent probe
8
cells rat
8
gouty arthritis
8
endogenous generation
8
hno cells
8

Similar Publications

Functional soft palate reconstruction.

JPRAS Open

March 2025

Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland.

Background: The excision of oropharyngeal carcinoma of more than 50% of the soft palate followed by static reconstruction may result in functional deficits, including velopharyngeal insufficiency, swallowing, and speech difficulties. We describe a functional soft palate reconstruction technique aimed at restoring aeromechanical and acoustic functions, enabling swallowing without nasal regurgitation and speech with low nasalance.

Material And Methods: We developed a new operative technique, using muscle transfer and a free flap to create a dynamic reconstruction.

View Article and Find Full Text PDF

Simultaneous quantification of Hg(II) and Pb(II) by square wave anodic stripping voltammetry using Bi/graphite electrode.

Heliyon

July 2024

Engineering Faculty, Department of Environmental and Chemical Engineering, Universidad Nacional de Colombia, Colombia.

In the present work, we report the synthesis and evaluation of a graphite-supported bismuth film working electrode (BiFE) in the simultaneous quantification of Hg(II) and Pb(II) at ppb levels. The BiFE was synthesized in-situ by electrodeposition in 1 M HNO as the supporting electrolyte at -0.5 V potential.

View Article and Find Full Text PDF

Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.

Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.

View Article and Find Full Text PDF

Cocombustion with biomass tar is a potential method for NO reduction during fossil fuel combustion. In this work, the molecular dynamic method based on the reactive force field was used to study the NO reduction by phenol, which is a typical tar model compound. Results indicate that phenol undergoes significant decomposition at 3000 K, resulting in the formation of small molecular fragments accompanied by the generation of large molecular, network-structured soot particles.

View Article and Find Full Text PDF

A nitrosyl complex of Mn-porphyrinate, 1 has been synthesized and characterized. It was found to donate a nitroxyl anion (NO) to suitable acceptors in dichloromethane solution in the presence of visible light. The evolution of NO and the characteristic reaction with PPh in the presence of H confirms the NO/HNO donation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!