Evaluation of tofu as a potential tissue engineering scaffold.

J Mater Chem B

Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China.

Published: March 2018

Tofu not only is a delicious vegetarian food, but also shows potential biomedical applications for its high protein content and typical porous scaffold structure. Herein, two kinds of porous soybean scaffolds were developed, the first based on the traditional tofu manufacturing processes, the second modified via covalent crosslinking. The morphology, physicochemical properties and biocompatibility in vitro and in vivo were systematically investigated. A similar porous micromorphology was observed in both the tofu scaffolds and crosslinked soybean protein scaffolds. Both scaffolds exhibited good cell proliferation and cellular adherence. No obvious inflammatory response was observed after subcutaneous implantation tests for either material. These results demonstrated that the tofu scaffolds or soybean protein scaffolds fabricated by tofu processing have potential as new food-source biomaterials in tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb02852kDOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
tofu scaffolds
8
soybean protein
8
protein scaffolds
8
scaffolds
6
tofu
5
evaluation tofu
4
tofu potential
4
potential tissue
4
engineering scaffold
4

Similar Publications

"Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose.

J Am Chem Soc

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Peficitinib suppresses diffuse-type tenosynovial giant cell tumor by targeting TYK2 and JAK/STAT signaling.

Sci China Life Sci

January 2025

Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.

Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects.

View Article and Find Full Text PDF

Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!