In this study, a single-interface photoelectrochemical (PEC) sensor for detecting two antigens, alpha fetoprotein (AFP) and cancer antigen 153 (CA 153), was achieved based on the heterostructure of branched titanium dioxide nanorods (B-TiO NRs)@strontium titanate (SrTiO) heterostructures. The B-TiO NRs@SrTiO heterostructure, prepared by a facile hydrothermal method with the feature of enhanced photogenerated charge carrier separation properties, was first employed as a photoactive substrate for anchored analyst. In order to achieve the goal of successfully detecting two biomarkers at a single interface, the two specific enzyme tags β-galactosidase and acetylcholine esterase linked with a secondary detection antibody were utilized to catalytically hydrolyze p-aminophenyl galactopyranoside and acetylthiocholine to p-aminophenol and thiocholine, respectively. Based on the above enzyme-catalyzed reactions to produce sacrificial electron donors, the photocurrent signals generated from different analytes could be distinguished at a single interface. The results demonstrate that this single-interface PEC sensor not only provides a method for the early detection of AFP and CA 153 but also provides new insight into designing a novel PEC sensor for the detection of two biomarkers with high efficiency and a simple method of operation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb00992aDOI Listing

Publication Analysis

Top Keywords

pec sensor
12
single-interface photoelectrochemical
8
detection biomarkers
8
single interface
8
sensor
4
photoelectrochemical sensor
4
sensor based
4
based branched
4
branched tio
4
tio nanorods@strontium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!