A reduction-responsive liposomal nanocarrier with self-reporting ability for efficient gene delivery.

J Mater Chem B

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

Published: May 2018

In the past few decades, although various reduction-responsive nanocarriers have been designed and explored for gene delivery, it is difficult to directly detect or monitor the reduction capability of these carriers, especially under intracellular conditions. Taking advantage of the generated fluorescence signal in the reduction process of the naphthalimide-sulfonamide (NS) group, we developed a novel liposomal nanocarrier, FNSL, which showed reduction-sensitive property and self-reporting character. As a new reduction-responsive site in a gene delivery system, the NS group in FNSL is capable of responding to glutathione (GSH) and simultaneously emitting green fluorescence at 500 nm in both extra- and intracellular circumstances. Hence, it will be very convenient to assess the reducibility of this carrier and monitor the stimuli-responsive gene release via fluorescence signal. FNSL has high affinity for DNA and can condense it into nanoparticles with a proper nano-size and zeta potential. Compared with the non-reducible FNAL, FNSL showed enhanced gene release capability, higher transfection efficiency (TE), and lower cytotoxicity. Furthermore, treatment of FNSL-mediated transfection with slightly exogenous GSH greatly improved the TE of FNSL in HepG2 cells, and its TE was even higher than that of Lipofectamine 2000. These results demonstrate that FNSL possesses great potential for efficient and low-toxicity gene delivery, and this study on a bioreducible liposome with self-reporting ability would be a guide for further research on the development of biodegradable gene carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb00392kDOI Listing

Publication Analysis

Top Keywords

gene delivery
16
liposomal nanocarrier
8
self-reporting ability
8
fluorescence signal
8
gene release
8
gene
7
fnsl
6
reduction-responsive liposomal
4
nanocarrier self-reporting
4
ability efficient
4

Similar Publications

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only.

View Article and Find Full Text PDF

Recent advances in the synthesis and application of biomolecular condensates.

J Biol Chem

January 2025

CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Biomolecular condensates (BMCs) represent a group of organized and programmed systems that participate in gene transcription, chromosome organization, cell division, tumorigenesis, and aging. However, the understanding of BMCs in terms of internal organizations and external regulations remains at an early stage. Recently, novel approaches such as synthetic biology have been used for de novo synthesis of BMCs.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse.

Biomaterials

December 2024

Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:

Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!