We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr/Ser in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176436PMC
http://dx.doi.org/10.7554/eLife.56418DOI Listing

Publication Analysis

Top Keywords

impdh1
8
retinal impdh1
8
impdh1 vivo
8
living mice
8
post-translational regulation
4
regulation retinal
4
vivo adjust
4
gtp
4
adjust gtp
4
gtp synthesis
4

Similar Publications

Objective: Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is an increasing incidence of inflammatory disorder in the colon mucosa. One of the current research focuses is the alteration of metabolic networks in UC. One of the important aspects of this metabolic shift is the expression of purine metabolism genes (PMGs) vital for nucleic acid synthesis.

View Article and Find Full Text PDF

Desuccinylation of inosine-5'-monophosphate dehydrogenase 1 by SIRT5 promotes tumor cell proliferation.

J Biol Chem

December 2024

Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China. Electronic address:

Inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the rate limiting step of de novo purine synthesis. Currently, it remains still largely unknown how this metabolic event is regulated in tumor cells. Here, we report that a deacetylase sirtuin 5 (SIRT5) may possess a regulatory effect on GMP anabolism by desuccinylating IMPDH1.

View Article and Find Full Text PDF

Integrated non-targeted metabolomics and lipidomics reveal mechanisms of fluorotelomer sulfonates-induced toxicity in human hepatocytes.

Environ Int

November 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

Fluorotelomer sulfonates (FTSs) are widely used as novel substitutes for perfluorooctane sulfonate, inevitably leading to FTSs accumulation in various environmental media and subsequent exposure to humans. This accumulation eventually poses environmental hazards and health risks. However, their toxicity mechanisms remain unclear.

View Article and Find Full Text PDF

The human neural retina is a complex tissue with abundant alternative splicing and more than 10% of genetic variants linked to inherited retinal diseases (IRDs) alter splicing. Traditional short-read RNA-sequencing methods have been used for understanding retina-specific splicing but have limitations in detailing transcript isoforms. To address this, we generated a proteogenomic atlas that combines PacBio long-read RNA-sequencing data with mass spectrometry and whole genome sequencing data of three healthy human neural retina samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!