Disulfiram in conjunction with copper has been shown to be a potent anticancer agent. However, disulfiram's therapeutic potential in prostate cancer is hindered by off-target effects due to its reactive and nucleophilic thiol-containing component, diethyldithiocarbamate (DTC). To minimize undesirable reactivity, we have strategically blocked the thiol moiety in DTC with a cleavable p-aminobenzyl (pAB) group linked to peptide substrates recognized by prostate specific antigen (PSA). Here we report the synthesis and evaluation in cancer cell models of two PSA-activatable prodrugs: HPD (Ac-HSSKLQL-pAB-DTC and RPD (RSSYYSL-pAB-DTC). In vitro exposure to PSA was found to trigger activation of HPD and RPD to release diethyldithiocarbamate, and both prodrugs were found to induce toxicity in prostate cancer cells, with HPD showing the most promising selectivity. With copper supplementation, the IC of HPD was 1.4 µM in PSA-expressing LNCaP cells, and 11 µM in PC3 cells that do not express PSA. These studies demonstrate the utility of using peptide recognition handles to direct the activity of dithiocarbamate prodrugs for selective cytotoxicity of cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330515PMC
http://dx.doi.org/10.1016/j.bmcl.2020.127148DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
dithiocarbamate prodrugs
8
prostate specific
8
specific antigen
8
cancer cells
8
prostate
5
cancer
5
prodrugs activated
4
activated prostate
4
antigen target
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!