Two three-dimensional symmetric tetraphenylbutadiene derivatives decorated with diphenylamine or triphenylamine fragments are first prepared for use as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). The HTMs are acquired using straightforward synthetic methods and facile purification techniques. The thermal stability, photophysical properties, electrochemical behaviors, computational study, hole mobility, X-ray diffraction, hole transfer dynamics, hydrophobicity, surface morphology, and photovoltaic performances of the HTMs are discussed. The highest power conversion efficiency (PCE) of -based cell is 13.75%, which is increased to 20.06% when is used as HTM, superior to the PCE of the cell based on 2,2',7,7'-tetrakis(,-di--methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (18.90%). The preparation cost of accounts for merely 23.1% of the price of commercial spiro-OMeTAD, while the concentration of solution used in the device fabrication (60.0 mg mL) is lower compared with that of the spiro-OMeTAD solution (72.3 mg mL). These results corroborate that the screw-like HTMs with a highly distorted configuration are facilely available and promising candidates for PSCs. More importantly, a practical solution is proposed to achieve moderate charge mobility and good film-formation ability of the HTMs simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c02751DOI Listing

Publication Analysis

Top Keywords

hole-transporting materials
8
perovskite solar
8
solar cells
8
charge mobility
8
htms
5
tetraphenylbutadiene-based symmetric
4
symmetric hole-transporting
4
materials perovskite
4
cells trial
4
trial trade-off
4

Similar Publications

The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.

View Article and Find Full Text PDF

The engineering of charge transport materials, with electronic characteristics that result in effective charge extraction and transport dynamics, is pivotal for the realization of efficient perovskite solar cells (PSCs). Herein, we elucidate the critical role of terminal substituent methoxy groups (-OCH) on the bandgap tuning of the spiro-like hole transport materials (HTMs) to realize performant and cost-effective PSCs. By considering spiro-OMeTAD as the benchmark HTM, we kept the backbone of spiro while replacing diphenylamine with phenanthrenimidazole.

View Article and Find Full Text PDF
Article Synopsis
  • Typical PEDOT:PSS hole-transporting layers have issues like energy level mismatches and high acidity that decrease device performance.
  • An innovative method involves treating indium tin oxide (ITO) substrates with halogenated solvents, leading to four distinct types of ITO anodes with improved physical properties.
  • The new ITO anodes show increased work functions and better power conversion efficiencies in organic photovoltaic devices compared to traditional ITO/PEDOT:PSS, demonstrating the potential for more efficient solar energy solutions.
View Article and Find Full Text PDF

Development of Dopant-Free N,N'-Bicarbazole-Based Hole Transport Materials for Efficient Perovskite Solar Cells.

Int J Mol Sci

December 2024

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Efficient and stable hole-transport material (HTM) is essential for enhancing the efficiency and stability of high-efficiency perovskite solar cells (PSCs). The commonly used HTMs such as spiro-OMeTAD need dopants to produce high efficiency, but those dopants degrade the perovskite film and cause instability. Therefore, the development of dopant-free N,N'-bicarbazole-based HTM is receiving huge attention for preparing stable, cost-effective, and efficient PSCs.

View Article and Find Full Text PDF

The inverse design of tailored organic molecules for specific optoelectronic devices of high complexity holds an enormous potential but has not yet been realized. Current models rely on large data sets that generally do not exist for specialized research fields. We demonstrate a closed-loop workflow that combines high-throughput synthesis of organic semiconductors to create large datasets and Bayesian optimization to discover new hole-transporting materials with tailored properties for solar cell applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!