Halophilic microorganisms are found in all domains of life and thrive in hypersaline (high salt content) environments. These unusual microbes have been a subject of study for many years due to their interesting properties and physiology. Study of the genetics of halophilic microorganisms (from gene expression and regulation to genomics) has provided understanding into mechanisms of how life can occur at high salinity levels. Here we highlight recent studies that advance knowledge of biological function through study of the genetics of halophilic microorganisms and their viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230515 | PMC |
http://dx.doi.org/10.3390/genes11040388 | DOI Listing |
Microorganisms
January 2025
Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria.
Extremophiles are of significant scientific interest due to their unique adaptation to harsh environmental conditions and their potential for diverse biotechnological applications. Among these extremophiles, filamentous fungi adapted to high-salt environments represent a new and valuable source of enzymes, biomolecules, and biomaterials. While most studies on halophiles have focused on bacteria, reports on filamentous fungi remain limited.
View Article and Find Full Text PDFMicroorganisms
January 2025
Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy.
() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.
View Article and Find Full Text PDFSci Total Environ
February 2025
Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Modern-day consumers are interested in highly nutritious and safe foods with corresponding organoleptic qualities. Such foods are increasingly subjected to various processing techniques which include the use of enzymes. These enzymes like amylases, lipases, proteases, xylanases, laccases, pullulanase, chitinases, pectinases, esterases, isomerases, and dehydrogenases could be derived from extremophilic organisms such as thermophiles, psychrophiles, acidophiles, alkaliphiles, and halophiles.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymer with a biomass content of 8.0 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!