Imazapyr is a herbicide that can be used in irrigation canals to control a range of aquatic weed species, however, its residual nature, combined with its phytotoxicity to crops at low concentrations, means that the water in canals must be carefully managed following imazapyr application. Residues of the herbicide imazapyr (isopropylamine salt) in irrigation water were analysed and modelled after application to irrigation canals in south-eastern Australia. A treatment program to control delta arrowhead (sagittaria; (Engelm.) J.G. Sm.) in over 400 km of irrigation canals was enacted by applying imazapyr to dewatered canals during winter. Following imazapyr application, canals were left dewatered for a period (up to eight weeks) and then refilled. After refilling, canals were ponded for a period (up to 28 days) to allow degradation of imazapyr in the water via photolysis. Upon refilling canals, ~650 water samples containing imazapyr were collected across the treatment area and data modelled to measure the extent of water contamination and to guide efforts to reduce the subsequent irrigation hazard to crops. Modelled data demonstrates that imazapyr behaviour in irrigation water following canal refilling was predictable when 1) amount of imazapyr applied, 2) the dewatered period following herbicide application, 3) the water ponding period, and 4) solar exposure during water ponding were taken into account. Minimising the amount applied (g imazapyr per km of canal) and maximising the time between spraying and refilling (dewatered period) reduced the initial concentration in the water following canal refilling. The amount of imazapyr in the canal water following refilling was reduced by half for every 16 days (confidence interval = 10-38 days) that the canal remained dewatered after imazapyr application. Imazapyr dissipation during the ponding period following canal refilling occurred at a rate that depended on solar exposure. Dissipation did not occur when solar exposure was <8.5 MJ m. However, when solar exposure was >10 MJ m, imazapyr concentration in the water reduced by half for every 4.4 days of ponding period (confidence interval = 2.9-9.5 days). Our two models, combined with local climate data on solar exposure, can be used by canal managers to determine the optimal time to refill canals so that imazapyr dissipation is maximised, and thus risk of damaging irrigated crops is minimised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177497 | PMC |
http://dx.doi.org/10.3390/ijerph17072421 | DOI Listing |
Sci Rep
November 2024
Physical Chemistry Department, Electrochemistry and Corrosion Lab, National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt.
Despite the widespread use of titanium dioxide (TiO) in photocatalytic applications, its inherent limitations, such as low efficiency under visible light and rapid recombination of electron-hole pairs, hinder its effectiveness in environmental remediation. This study presents a comparative investigation of TiO-based composites, including TiO/ZrO, ZnO, TaO, SnO, FeO, and CuO, aiming to assess their potential for enhancing photocatalytic applications. Photocatalysis holds promise in environmental remediation, water purification, and energy conversion, with TiO being a prominent photocatalyst.
View Article and Find Full Text PDFJ Sci Food Agric
February 2025
INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
Background: Highly polar herbicides, such as imidazolinones, are used for weed control to increase agricultural productivity and crop quality. However, their misapplication can lead to residues in ready-to-eat food with a potential health risk for consumers. Hence, the fast determination of these herbicides is necessary for timely action.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2024
Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), viale dell'Università 16, 35020 Legnaro, PD, Italy.
Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the Amaranthus retroflexus biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr.
View Article and Find Full Text PDFChemosphere
May 2024
Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa. Electronic address:
J Environ Sci Health B
April 2024
Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil.
The aim of the present study was to assess the selectivity of herbicides applied in the pre and post-planting of pre-sprouted seedlings (PSS). The experiment was conducted in a greenhouse, using a completely randomized design, with nine treatments and four repetitions. The IACSP95-5000 cultivar was used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!