With the phase out of perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), the composition profiles of poly- and perfluoroalkyl substance (PFAS) in our living environment are unclear. In this study, 25 PFASs were analyzed in indoor dust samples collected from urban, industrial, and e-waste dismantling areas in China. PFOS alternatives, including 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) (median: 5.52 ng/g) and 8:2 chlorinated polyfluorinated ether sulfonate (8:2 Cl-PFESA) (1.81 ng/g), were frequently detected. By contrast, PFOA alternatives, such as hexafluoropropylene oxide dimer acid (HPFO-DA, Gen-X) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA), were not found in any of the dust samples. As expected, all legacy PFASs were widely observed in indoor dust, and 4 PFAS precursors were also detected. Dust concentrations of 6:2 Cl-PFESA were strongly correlated (p < 0.05) with those of 8:2 Cl-PFESA regardless of sampling sites. 6:2 Cl-PFESA was also significantly associated with that of PFOS in industrial and e-waste (p < 0.01) areas. Association analysis suggested that the sources of PFOS and its alternatives are common or related. Although ∑Cl-PFESA concentration was lower than that of PFOS (17.4 ng/g), industrial areas had the highest 6:2 Cl-PFESA/PFOS ratio (0.63). Composition profiles of PFASs in the industrial area showed the forefront of fluorine change. Thus, the present findings suggested that Cl-PFESAs are widely used as PFOS alternatives in China, and high levels of human Cl-PFESA exposure are expected in the future. Short-chain PFASs (C4-C7) were the predominant PFASs found in dust samples, contributing to over 40% of ∑total PFASs. Furthermore, perfluoro-1-butanesulfonate/PFOS and perfluoro-n-butanoic acid (PFBA)/PFOA ratios were 2.8 and 0.72, respectively. These findings suggested shifting to the short-chain PFASs in the environment in China. To the authors knowledge this is the first study to document the levels of 6:2 Cl-PFESA, 8:2 Cl-PFESA in indoor dust.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114461DOI Listing

Publication Analysis

Top Keywords

indoor dust
12
poly- perfluoroalkyl
8
urban industrial
8
industrial e-waste
8
e-waste dismantling
8
dismantling areas
8
dust samples
8
chlorinated polyfluorinated
8
polyfluorinated ether
8
ether sulfonate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!