Data are sparse about mitochondrial damage in GBS and in its most frequently employed animal model, experimental autoimmune neuritis (EAN). We here characterized changes in mitochondrial content and morphology at different time points during EAN by use of ultrastructural imaging and immunofluorescent labelling. Histological examination revealed that demyelinated axons and their adjacent Schwann cells showed reduced mitochondrial content and remaining mitochondria appeared swollen with greater diameter in Schwann cells and unmyelinated axons. Our findings indicate that in EAN, particularly mitochondria in Schwann cells are damaged. Further studies are warranted to address whether these changes are amenable to novel, mitoprotective treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2020.577218 | DOI Listing |
Front Oncol
January 2025
Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Gastric schwannoma is a relatively rare submucosal mesenchymal tumor with low probability of metastasis and arises from Schwann cells of the gastrointestinal nervous plexus. Surgical therapy is the main treatment of gastric schwannoma with symptoms or malignant tendency. Gastroparesis is a potential complication following gastrointestinal surgery, which is a clinical syndrome caused by gastric emptying disorder and characterized by nausea, vomiting, and bloating, resulting in insufficient nutrient intake.
View Article and Find Full Text PDFJ Neurochem
January 2025
Institute for Physiology, University of Tübingen, Tübingen, Germany.
Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
January 2025
Department of Neurosurgery, General Hospital Bamberg, Bamberg, Germany.
Background: Optic nerve schwannomas are an extremely rare pathology in neurosurgery. Their origin is rather debatable given the structure of the optic nerve, which does not typically have Schwann cells therein. However, a number of clinical cases of optic nerve tumors classified as schwannomas have been described in the literature.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFMatrix Biol Plus
February 2025
Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!