Multidrug resistance (MDR) of pathogens is an ongoing public health crisis exacerbated by the horizontal transfer of antibiotic resistance genes via conjugative plasmids. Factors that stabilize these plasmids in bacterial communities contribute to an even higher incidence of MDR, given the increased likelihood that a host will already contain a plasmid when it acquires another through conjugation. Here, we show one such stabilizing factor is host-plasmid coevolution under antibiotic selection, which facilitated the emergence of MDR via two distinct plasmids in communities consisting of Escherichia coli and Klebsiella pneumoniae once antibiotics were removed. In our system, evolution promoted greater stability of a plasmid in its coevolved host. Further, pleiotropic effects resulted in greater plasmid persistence in both novel host-plasmid combinations and, in some cases, multi-plasmid hosts. This evolved stability favoured the generation of MDR cells and thwarted their loss within communities with multiple plasmids. By selecting for plasmid persistence, the application of antibiotics may promote MDR well after their original period of use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049106PMC
http://dx.doi.org/10.1038/s41559-020-1170-1DOI Listing

Publication Analysis

Top Keywords

multidrug resistance
8
plasmid persistence
8
mdr
5
coevolution host-plasmid
4
host-plasmid pairs
4
pairs facilitates
4
facilitates emergence
4
emergence novel
4
novel multidrug
4
resistance multidrug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!