Unlike their more common linear counterparts, cyclic polymers have a ring-like structure and a lack of chain ends. Because of their topology, cyclic polymers exhibit a unique set of properties when compared with linear or branched macromolecules. For example, cyclic homopolymers exhibit a reduced hydrodynamic volume and a slower degradation profile compared with their linear analogues. Cyclic block copolymers self-assemble into compact nanostructures, as illustrated by their reduced domain spacing when cast into thin films and their reduced micellar size in solution. Although methods for preparing well-defined cyclic polymers have only been available since 1980, the extensive utilization of the cyclic topology in nature highlights the vital role that a cyclic architecture can play in imparting valuable physical properties, such as increased chemical stability or propensity towards self-assembly. This Review describes the major developments in the synthesis of cyclic polymers and provides an overview of their fundamental physical properties. In this context, preliminary studies exploring potential applications will be critically assessed and the remaining challenges for the field delineated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-020-0440-5 | DOI Listing |
Carbohydr Polym
March 2025
Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China. Electronic address:
The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China. Electronic address:
Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.
View Article and Find Full Text PDFFASEB J
January 2025
Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, China.
A series of biodegradable nanoparticle-based drug delivery systems have been designed utilizing poly(β-amino ester)-guanidine-phenylboronic acid (PBAE-G) polymers. In this study, a novel Lentinan-Functionalized PBAE-G-nanodiamond system was developed to carry ovalbumin (LNT-PBAE-G-ND@OVA). The impact of this drug delivery system on the activation and maturation of macrophages was then assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!