Rice blast resistance gene, Pi54 provides broad-spectrum resistance against different strains of Magnaporthe oryzae. Understanding the cellular localization of Pi54 protein is an essential step towards deciphering its place of interaction with the cognate Avr-gene. In this study, we investigated the sub-cellular localization of Pi54 with Green Fluorescent Protein (GFP) as a molecular tag through transient and stable expression in onion epidermal cells (Allium cepa) and susceptible japonica cultivar rice Taipei 309 (TP309), respectively. Confocal microscopy based observations of the onion epidermal cells revealed nucleus and cytoplasm specific GFP signals. In the stable transformed rice plants, GFP signal was recorded in the stomata, upper epidermal cells, mesophyll cells, vascular bundle, and walls of bundle sheath and bulliform cells of leaf tissues. These observations were further confirmed by Immunocytochemical studies. Using GFP specific antibodies, it was found that there was sufficient aggregation of GFP::Pi54protein in the cytoplasm of the leaf mesophyll cells and periphery of the epidermal cells. Interestingly, the transgenic lines developed in this study could show a moderate level of resistance to Xanthomonas oryzae and Rhizoctonia solani, the causal agents of the rice bacterial blight and sheath blight diseases, respectively. This study is a first detailed report, which emphasizes the cellular and subcellular distribution of the broad spectrum blast resistance gene Pi54 in rice and the impact of its constitutive expression towards resistance against other fungal and bacterial pathogens of rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090074PMC
http://dx.doi.org/10.1038/s41598-020-59027-xDOI Listing

Publication Analysis

Top Keywords

epidermal cells
16
blast resistance
12
resistance gene
12
gene pi54
12
sub-cellular localization
8
pathogens rice
8
localization pi54
8
onion epidermal
8
mesophyll cells
8
rice
7

Similar Publications

Bioinformatics Analysis of Programmed Death-1-Trastuzumab Resistance Regulatory Networks in Breast Cancer Cells.

Asian Pac J Cancer Prev

January 2025

Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.

Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.

View Article and Find Full Text PDF

Vitiligo is a pigmentary disorder acquired and caused by the loss or destruction of melanocytes from the epidermis. There is strong proof that vitiligo is mainly an autoimmune disease. Cathelicidin (LL37), an antimicrobial polypeptide, is an important part of the innate immune system and has a role in different skin autoimmune diseases.

View Article and Find Full Text PDF

The role of the electron transport chain (ETC) in cell proliferation control beyond its crucial function in supporting ATP generation has recently emerged. In this study, we found that, among the four ETC complexes, the complex I (CI)-mediated NAD regeneration is important for cancer cell proliferation. In cancer cells, a decrease in CI activity by RNA interference (RNAi) against NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1) arrested the cell cycle at the G/S phase, accompanying upregulation of p21 cyclin-dependent kinase inhibitor expression.

View Article and Find Full Text PDF

The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin.

View Article and Find Full Text PDF

Ferroptosis has been characterised by disruption of the cell membrane through iron-related lipid peroxidation. However, regulation of iron homeostasis in lung cancer cells that are resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains unclear. Transcriptome analysis identified a significant downregulation of apoptosis-associated tyrosine kinase (AATK) mRNA expression in gefitinib-resistant PC9 (PC9-GR) cells, which were found to be more susceptible to ferroptosis inducers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!