Enantioselective α-aminomethylation of carbonyl compounds constitutes a powerful protocol for introducing aminomethyl groups to simple organic molecules. However, current strategies rely on nucleophile-based enantioselective activation with inherently activated substrates only, and enantioselective protocol based on the activation of in situ-generated unstable formaldimines remains elusive, probably owing to their unstable nature and the lack of steric environment for efficient stereocontrols. Here, based on a rhodium/chiral phosphoric acid cooperative catalysis, we achieved an enantioselective three-component reaction of α-diazo ketones with alcohols and 1,3,5-triazines. A dual hydrogen bonding between the chiral phosphoric acid catalyst and two distinct active intermediates was proposed to be crucial for the efficient electrophile-based enantiocontrol. A series of chiral β-amino-α-hydroxy ketones including those derived from simple aliphatic alcohols, allylic alcohol, propargyl alcohol, complicated natural alcohols and water could all be prepared in high efficiency and enantioselectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089982 | PMC |
http://dx.doi.org/10.1038/s41467-020-15345-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!