Lithium is a highly effective medication for bipolar disorder, but its mechanism of action remains unknown. In this study, brain MRI scans and blood samples for gene expression (total of 110 scans and 109 blood samples) were collected from 21 bipolar subjects before and after 2 and 8 weeks of lithium monotherapy and at the same time-points from untreated 16 healthy controls. We used linear mixed-effects models to identify brain structural features and genes with expression changed after lithium treatment, with correction for multiple testing, and correlated their concurrent changes to identify molecular pathways associated with lithium effects. There are significant increases in gray matter fraction, global cortical thickness, and the frontal and parietal cortices after 8 weeks of lithium treatment (corrected p < 0.05). Volume increases were also seen for putamen, hippocampus, thalamic nuclei, and thalamic substructures. Several genes showed significant expression changes, and 14 gene pathways were identified for the present integration analysis. Of these, nine pathways had significant correlations with structural changes (FDR < 0.05). Three neurotrophy-related pathways (GDNF family of ligands, NFAT immune-response, and p53-signaling pathway) correlated with structural changes in multiple regions. Mediation analysis showed that the sphingomyelin metabolism pathway is associated with HAM-D change (p < 0.01), and this effect is mediated via the volume of mediodorsal thalamus (p < 0.03). In summary, the integration of lithium effects on brain structural and peripheral gene expression changes revealed effects on several neurotrophic molecular pathways, which provides further insights into the mechanism of lithium action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136209PMC
http://dx.doi.org/10.1038/s41398-020-0784-zDOI Listing

Publication Analysis

Top Keywords

lithium treatment
12
gene expression
8
mechanism action
8
blood samples
8
weeks lithium
8
lithium
6
integrative analysis
4
analysis lithium
4
treatment associated
4
associated effects
4

Similar Publications

Although lithium (LIT) therapy is key in managing bipolar disorder long-term, prolonged use significantly contributes to acquired Nephrogenic Diabetes Insipidus (NDI). This study examined whether combining Silymarin (SIL) with Vitamin C (Vit C) enhances protection against lithium-induced nephrotoxicity in rats, comparing their individual antioxidant effects as well. Rats subjected to Li exposure were provided with a standard commercial diet supplemented with 80 mmol LiCl per kilogram for 28 days.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.

View Article and Find Full Text PDF

Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.

Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!