To enable analysis of the risk of occupants sustaining rib fractures in a crash, generic finite element models of human ribs, one through twelve, were developed. The generic ribs representing an average sized male, were created based on data from several sources and publications. The generic ribs were validated for stiffness and strain predictions in anterior-posterior bending. Essentially, both predicted rib stiffness and rib strain, measured at six locations, were within one standard deviation of the average result in the physical tests. These generic finite elements ribs are suitable for strain-based rib fracture risk predictions, when loaded in anterior-posterior bending. To ensure that human variability is accounted for in future studies, a rib parametric study was conducted. This study shows that the rib cross-sectional height, i.e., the smallest of the cross-sectional dimensions, accounted for most of the strain variance during anterior-posterior loading of the ribs. Therefore, for future rib fracture risk predictions with morphed models of the human thorax, it is important to accurately address rib cross-sectional height.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.103742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!