AI Article Synopsis

  • Introduced species pose significant threats to freshwater biodiversity, necessitating management strategies to protect native wildlife, particularly in relation to environmental dynamics.
  • The invasive fish Gambusia holbrooki negatively impacts the threatened native fish Galaxiella pusilla, primarily affecting larval survival, while G. pusilla can survive drying conditions that G. holbrooki cannot.
  • A stochastic population model suggests that natural and management-induced drying could help preserve G. pusilla, emphasizing the importance of maintaining aquatic vegetation and natural drying systems to mitigate the effects of invasive species.

Article Abstract

Introduced species are a major threat to freshwater biodiversity. Often eradication is not feasible, and management must focus on reducing impacts on native wildlife. This requires an understanding of how native species are affected but also how environmental characteristics influence population dynamics of both invasive and native species. Such insights can inform how to manipulate systems in order to take advantage of life-history traits native species possesses that invaders do not. The highly invasive fish, Gambusia holbrooki, has been implicated in the decline of many freshwater fish and amphibians. In south-eastern Australia, one of these is the threatened native fish, Galaxiella pusilla. As G. pusilla can survive periods without surface water, this presents an opportunity for adaptive management, given G. holbrooki lack these adaptations. We develop a stochastic population model to explore the impact of G. holbrooki on G. pusilla and test the feasibility of both natural and management-induced drying to protect this species. Our results support recent empirical studies showing G. holbrooki are a serious threat to G. pusilla persistence, especially through impacts on larval survival. While persistence is more likely in water bodies that frequently dry out, even optimal natural drying regimes may be insufficient when impacts from G. holbrooki are high. However, management-induced drying may allow persistence of G. pusilla in sites inhabited by both species. Given our model outcomes, the biology of these species and the habitats they occupy, we recommend maintaining or restoring aquatic and riparian vegetation and natural drying regimes to protect G. pusilla from G. holbrooki, in addition to undertaking management-induced drying of invaded water bodies. Our results provide insights into how the effects of G. holbrooki may be mitigated for other native species, which is important given this species is perhaps the most pervasive invader of freshwater ecosystems. We conclude with a discussion of the potential for using disturbance processes in the management of invasive species more broadly in freshwater and terrestrial systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110524DOI Listing

Publication Analysis

Top Keywords

native species
16
species
12
management-induced drying
12
invasive species
8
stochastic population
8
population model
8
water bodies
8
natural drying
8
drying regimes
8
holbrooki
7

Similar Publications

Unlabelled: The yellow fever mosquito ( ) is an organism of high medical importance because it is the primary vector for diseases such as yellow fever, Zika, dengue, and chikungunya. Its medical importance has made it a subject of numerous efforts to understand their biology. One such effort, was the development of a high-quality reference genome (AaegL5).

View Article and Find Full Text PDF

Even after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration ( via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement.

View Article and Find Full Text PDF

While investigating the potential for species to hybridize in the mixed populations of Point Sal and Burton Mesa in Santa Barbara County, California, we discovered that from the Nipomo Mesa (San Luis Obispo County), formerly considered a northern population of , are genetically and morphologically distinct. We name this new taxon after the ytt (Northern Chumash language) word for the Nipomo Mesa region. For morphological and molecular analyses, we sampled 54 plants, focusing on , , and from multiple species and comparative single species populations.

View Article and Find Full Text PDF

Plant responses to changes in temperature can be a key factor in predicting the presence and managing invasive plant species while conserving resident native plant species in dryland ecosystems. Climate can influence germination, establishment, and seedling biomass of both native and invasive plant species. We tested the hypothesis that common and widely distributed native and an invasive plant species in dryland ecosystems in California respond differently to increasing temperatures.

View Article and Find Full Text PDF

elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China.

Heliyon

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.

Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!