Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Making cheese manufacturing environmentally sustainable is a major concern in the integrated management of this industrial sector. This concern is mainly due to the environmental impact of the discharge of its wastewaters, carrying heavy loads of salinity, nutrients, organic matter, solids and oils and fats. These discharges must meet increasingly stringent quality requirements. Some physicochemical (e.g. coagulation-flocculation, precipitation, oxidation) and biological (e.g. aerobic and anaerobic bioreactors and wetlands) treatments have been studied to address this problem. However, these treatments involve costs that some producers cannot sustain, face difficulties with biological reactor operational stability and often fail to consistently produce effluents compatible with discharge standards. In this context, aiming at the design of a simple and economical treatment method, several precipitation processes were tested using a fixed dosage of CaCO (75 g/L), combined with different dosages of FeCl, FeSO or Ca(OH). The goal of the treatment was to produce a supernatant that would be evaluated as to its suitability for discharge into natural water courses or municipal treatment systems, or for reuse applications. The generated sludge would be evaluated for possible agricultural valorization. Through the measurement of the relevant supernatant quality parameters and using statistical analysis, it was possible to choose the best dosages for each of the tested coagulants (1.0, 1.0 and 0.6 g/L for FeCl, FeSO and Ca(OH), respectively). Among these, the most efficient treatment was obtained with CaCO 75 g/L + FeSO 1.0 g/L. For this best-case scenario, the treatment led to removal yield values of 55.1% for chemical oxygen demand (COD), 92.0% for total phosphorus, 95.7% for turbidity, 59.1% for total phenols, 94.3% for nitrates, 71.0% for nitrites, 51.0% for total solids (TS) and 97.2% for oils and fats. The treatment did not produce an effluent supernatant with adequate quality for direct discharge into water courses, serving however as an efficient pretreatment for agricultural reuse. All the sludges generated in these treatments showed good potential for agricultural valorization due to their high nutrient content, along with pH and conductivity values within the acceptable ranges for soil application. Thus, this work contributes for a better integration of the cheese manufacturing industry in the overall aims of water and nutrient resources recovery in rural, agricultural areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!