Colloidal crystals with a diamond and pyrochlore structure display wide photonic band gaps at low refractive index contrasts. However, these low-coordinated and open structures are notoriously difficult to self-assemble from colloids interacting with simple pair interactions. To circumvent these problems, one can self-assemble both structures in a closely packed MgCu Laves phase from a binary mixture of colloidal spheres and then selectively remove one of the sublattices. Although Laves phases have been proven to be stable in a binary hard-sphere system, they have never been observed to spontaneously crystallize in such a fluid mixture in simulations nor in experiments of micron-sized hard spheres due to slow dynamics. Here we demonstrate, using computer simulations, that softness in the interparticle potential suppresses the degree of 5-fold symmetry in the binary fluid phase and enhances crystallization of Laves phases in nearly hard spheres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199208 | PMC |
http://dx.doi.org/10.1021/acsnano.9b07090 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011.
From molecular dynamics (MD) simulations of melt-quenching and thermal aging procedures in pure Ag, Cu, Ag-Cu binary alloys, and Cu-Zr binary alloys, we have identified two distinct amorphous phases for a metastable undercooled liquid: the homogeneous L-phase with low shear rigidity and the heterogenous G-phase with much higher shear rigidity and a heterogeneity length scale Λ. Here, we examine two-phase equilibration studies showing that the G-phase melts to form the L-phase above ~1,000 K, which then transforms to form the crystal (X) phase; however, below the melting point of the G-Phase (~990 K), the X- and G-phases do not transform into each other. We suggest the presence of a G-phase is likely responsible for embrittlement often observed in metallic glasses.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic.
This paper summarizes the results of investigations into heterogeneous P23/P91 welds after long-term creep exposure at temperatures of 500, 550 and 600 °C. Two variants of welds were studied: In Weld A, the filler material corresponded to P91 steel, while in Weld B, the chemical composition of the consumable material matched P23 steel. The creep rupture strength values of Weld A exceeded those of Weld B at all testing temperatures.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Czech Technical University in Prague, 16629 Prague, Czech Republic.
The need to reduce energy consumption means that it is necessary to reduce the weight of vehicles. However, a thick wall of massive elements promotes the formation of casting defects, which must be removed by either plastic processing (straightening) or welding methods (surface and internal discontinuities). Basic alloys contain Al and Zn as the main alloying elements.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, China.
TiC-TiB dual-phase nanoparticles were added into a Ni-Fe-based cast superalloy and their effects on the microstructure and mechanical properties were compared to those of a Ni-Fe-based superalloy with the addition of TiC nanoparticles. The addition of TiC nanoparticles led to the precipitation of a higher volume fraction of carbides. Compared to the addition of TiC, the addition of TiC-TiB nanoparticles not only led to the precipitation of carbides but also promoted the formation of flaky borides and a reduction in the precipitation of the Laves phase.
View Article and Find Full Text PDFChemistry
December 2024
Inorganic Solid State Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany.
Laves phases are an interesting field of research when it comes to structural chemistry and physical properties. Investigations of the ternary system Zr-V-Al showed, in contrast to the system Hf-V-Al, that no superstructures can be observed within the solid solution Zr(VAl) High values of x form aluminum rich phases that adopt the hexagonal MgZn type structure while low values of x lead to vanadium rich phases that adopt the cubic MgCu type. All samples were investigated by powder X-ray diffraction experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!