This work was aimed to formulate topical Apremilast (APM)-loaded nanostructured lipid carriers (NLCs) for the management of psoriasis. NLCs were prepared by a cold homogenization technique using Compritol 888ATO, oleic acid, Tween 80 and Span 20, and Transcutol P as a solid lipid, liquid lipid, surfactant mixture, and penetration enhancer, respectively. Carbopol 940 was used to convert NLC dispersion into NLC-based hydrogel to improve its viscosity for topical administration. The optimized formulation was characterized for size, polydispersity index (PDI), zeta potential (ZP), percentage of entrapment efficiency (%EE), and surface morphology. Furthermore, viscosity, spreadability, stability, in vitro drug diffusion, ex vivo skin permeation, and skin deposition studies were carried out. APM-loaded NLCs showed a narrow PDI (0.339) with a particle size of 758 nm, a %EE of 85.5%, and a ZP of -33.3 mV. Scanning electron microscopy confirmed spherical shape of NLCs. in vitro drug diffusion and ex vivo skin permeation results showed low drug diffusion, sustained drug release, and 60.1% skin deposition. The present study confirms the potential of the nanostructured lipid form of poorly water-soluble drugs for topical application and increased drug deposition in the skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dth.13370 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine AA receptor (AAR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with AAR antagonists (AARi).
View Article and Find Full Text PDFSci Rep
January 2025
Nanotechnology Department, Faculty of Science, Urmia University, Urmia, Iran.
Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:
Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!