Background: Increased firing across glutamatergic synapses may contribute to both the motor dysfunction and L-DOPA-induced dyskinesia seen in Parkinson's disease. Given their ability to reduce glutamate release, activation of group III metabotropic glutamate receptors such as metabotropic glutamate receptor 4 may prove effective against both motor dysfunction and dyskinesia in Parkinson's disease.
Objective: We hypothesised that activation of metabotropic glutamate receptor 4 by an orthosteric agonist ((2S)-2-amino-4-(hydroxy(hydroxy(4-hydroxy-3-methoxy-5-nitrophenyl)methyl)phosphoryl)butanoic acid, LSP1-2111) would produce antiparkinsonian activity and reduce expression of dyskinesia in a 1-methyl-4-phenyl,1,2,3,6-tetrahydropyridine (MPTP)-treated marmoset model of Parkinson's disease.
Methods: Common marmosets were previously treated with MPTP and pre-primed with L-DOPA for up to 28 days to express dyskinesia. LSP1-2111 (1, 3, or 6 mg/kg s.c.) or vehicle (0.9% saline s.c.) were administered immediately prior to L-DOPA (8 mg/kg + benserazide (10 mg/kg) p.o.) or vehicle (10% sucrose p.o.). Locomotor activity was measured in automated test cages and animals were scored for dyskinesia and disability.
Results: As expected, L-DOPA reversed motor disability and induced moderate dyskinesia. By contrast, LSP1-2111 alone significantly reduced the motor disability without any accompanying expression of dyskinesia. When administered in combination with L-DOPA, LSP1-2111 did not significantly reduce the severity of L-DOPA-induced dyskinesia.
Conclusion: Systemic administration of LSP1-2111 reduces motor disability without causing dyskinesia in MPTP-treated marmosets, supporting a role for metabotropic glutamate receptor 4 orthosteric agonists as promising monotherapy for PD. Conversely, this study found no evidence to support their use as antidyskinetic agents within the dose range tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JPD-191824 | DOI Listing |
Cell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system.
View Article and Find Full Text PDFNat Commun
January 2025
IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2025
Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America. Electronic address:
Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!