The aminoglycoside phosphotransferase (APH(3')-IIIa) kinases form a clinically central group of antibiotic-resistant enzymes. Computationally, we have studied the catalytic mechanism of the APH(3')-IIIa enzyme at the atomic-level. The proposed reaction mechanism involves protonation of Asp190 by the kanamycin 3'-hydroxyl group mediated through an explicit neighboring water molecule, which leads to a simultaneous nucleophilic attack on the γ-phosphate of the ATP by the deprotonated kanamycin 3'-hydroxyl group. The second step is a proton abstraction from the protonated Asp190 to the phosphate group of the phosphorylated kanamycin mediated by an explicit water molecule. The calculated Gibbs energy of activation (Δ) of the rate-determining step for the phosphorylation reaction is 77 kJ mol at the M06-2X/6-311++G(2df,p)//ONIOM(M06-2X/6-31+G(d):HF/6-31G(d)) level of theory. This study has provided a new understanding of the APH(3')-IIIa catalytic mechanism that agrees with the available experimental data (Δ = 75 ± 4 kJ mol) and could provide a starting point for the rational design of mechanism-based inhibitors of aminoglycoside modifying enzyme to circumvent antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c01604 | DOI Listing |
Mol Med
December 2024
Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea.
Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India.
Front Vet Sci
October 2024
Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary.
Introduction: One of the greatest challenges of our time is antimicrobial resistance, which could become the leading cause of death globally within a few decades. In the context of One Health, it is in the common interest to mitigate the global spread of antimicrobial resistance by seeking alternative solutions, alongside appropriate drug selection and responsible use. Probiotics offer a potential avenue to reduce antibiotic usage; however, there is a scarcity of research that examines commercial products in terms of carrying antimicrobial resistance genes (ARGs) involved in resistance development through microbial vectors.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, Murdoch, WA 6150, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
Front Cell Infect Microbiol
August 2024
Department of Laboratory Sciences, The People's Hospital of Yuhuan, Yuhuan, China.
Background: Aminoglycoside-modifying enzymes (AMEs) play an essential role in bacterial resistance to aminoglycoside antimicrobials. With the development of sequencing techniques, more bacterial genomes have been sequenced, which has aided in the discovery of an increasing number of novel resistance mechanisms.
Methods: The bacterial species was identified by 16S rRNA gene homology and average nucleotide identity (ANI) analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!