: Venous thromboembolism (VTE) is a frequent and serious complication in cancer patients. Nonetheless, patients with hematological cancers receive less attention as compared with their solid tumor counterparts regarding this potentially fatal complication.: Risk factors that are associated with the development of VTE in hematological cancers are discussed, based on a PubMed literature search. Since different hematological malignancies carry different risks of VTE, risk assessment in individual types of hematological cancers, including acute leukemias, lymphomas, myeloma, and myeloproliferative neoplasms are examined separately. Clinical relevance of VTE assessment and current guidelines on thromboprophylaxis in patients with hematological malignancies are also briefly reviewed.: When assessing VTE risk in patients with hematological cancers, in addition to the non-cancer specific risk factors, individual cancer-type-specific and the therapy-related factors must be taken into consideration. Primary thromboprophylaxis should be considered in high-risk patients.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17474086.2020.1751608DOI Listing

Publication Analysis

Top Keywords

hematological cancers
16
patients hematological
12
risk assessment
8
venous thromboembolism
8
cancer patients
8
risk factors
8
hematological malignancies
8
vte risk
8
hematological
7
patients
6

Similar Publications

Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma.

Blood Rev

January 2025

Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China. Electronic address:

Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined.

View Article and Find Full Text PDF

Construction of a stromal-related prognostic model in acute myeloid leukemia by comprehensive bioinformatics analysis.

Curr Res Transl Med

January 2025

Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets.

Methods: RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Diffuse Large B-cell Lymphoma (DLBCL) is a lymphatic cancer of steadily growing incidence. Its diagnostic and follow-up rely on the analysis of clinical biomarkers and 18F-Fluorodeoxyglucose (FDG)-PET/CT images. In this context, we target the problem of assisting in the early identification of high-risk DLBCL patients from both images and tabular clinical data.

View Article and Find Full Text PDF

Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER.

STAR Protoc

January 2025

Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.

View Article and Find Full Text PDF

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!