Background: To analyze the lncRNA UCA1-related downstream pathways and molecules of cisplatin resistance in lung adenocarcinoma.
Methods: We constructed overexpression and siRNA vectors targeting UCA1 and TXNIP and then used next-generation sequencing to compare the UCA1 overexpression and negative control from A549 cell.
Results: It shown that 647 upregulated mRNAs and 633 downregulated differentially expressed mRNAs-related UCA1, and the top ten upregulated mRNAs were CPD, AC007192.1, TGOLN2, LGR4, TFPI, CYP1B1, TOMM6, HLA-B, SLC35F6, and TOP2A, and top ten downregulated mRNAs were TXNIP, SESN2, STC2, HSPA1A, MMP10, CHAC1, DNAJB1, AC004922.1, ATF3, and GABARAPL1. We found TXNIP mRNA expression level was the most significantly downexpressed mRNA. TXNIP mRNA expression level of LAD tissues was clearly lower than the adjacent tissues. UCA1 expression level of cisplatin insensitive group was markedly higher than that of cisplatin-sensitive group, while TXNIP mRNA expression level of cisplatin insensitive group was clearly lower than that of cisplatin-sensitive group. Compared to the BEAS-2B, TXNIP mRNA expression level cut down in A549 and A549/DDP cell and that of A549/DDP cell was lower than A549 cell. After UCA1 overexpression, TXNIP mRNA obviously decreased, while proliferation ability and IC50 of A549 heightened. After knocking down UCA1, TXNIP mRNA was significantly increased, while proliferation ability and IC50 of A549/DDP lowered. PPI analysis result showed that TXNIP could interact with multiple proteins such as TXN, DDIT4, and NLRP3.
Conclusion: UCA1 promoted cisplatin resistance by downregulating TXNIP expression in LAD, and TXNIP could interact with multiple proteins. So, UCA1/TXNIP axis might affect cisplatin resistance in LAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439354 | PMC |
http://dx.doi.org/10.1002/jcla.23312 | DOI Listing |
Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
Programmed cell death (PCD) and circular RNA (circRNA) have been found to involve in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to explore PCD mechanisms and gene regulatory networks in RA. RA related to circRNA, mRNA and single-cell data sets were obtained from the GEO database.
View Article and Find Full Text PDFRespir Res
November 2024
Department of Respiratory and Critical Care Medicine, Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China.
Background: Acute lung injury or acute respiratory distress syndrome (ALI/ARDS) is a devastating clinical syndrome with high incidence and mortality rates. IRE1α-XBP1 pathway is one of the three major signaling axes of endoplasmic reticulum stress that is involved in inflammation, metabolism, and immunity. The role and potential mechanisms of IRE1α-XBP1 axis in ALI/ARDS has not well understood.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:
Int J Mol Sci
October 2024
Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!