Aim: To characterize several anti-Leishmania tropica nanobodies and to investigate their effect on Leishmania infection.
Methods: Several immunological tests were implied to characterize five different (as confirmed by sequencing) anti-L tropica nanobodies (NbLt05, NbLt06, NbLt14, NbLt24 and NbLt36) against parasite lysates or intact cells from different stages, promastigotes and amastigotes. Direct inhibitory effect of these nanobodies on parasite infection cycle on macrophages was tested in cell culture.
Results: All the five nanobodies (with distinguished characteristics) were more specific to L tropica than to L major, but could equally recognize the lysate and the outer surface of the intact cells from the two main stages of the parasite. Nanobodies recognized several leishmania antigens (majorly between 75 and 63 kDa), and their proteinaceous nature was confirmed. Because of its role in leishmania life cycle, gp63 was considered a potential antigen candidate for nanobodies, and bioinformatics predicted such interaction. All nanobodies have a negative effect on the infectivity of L tropica, as they decreased the number of infected macrophages and the amastigotes inside those macrophages.
Conclusion: Such anti-leishmania nanobodies, with outstanding characteristics and important target, can be of great use in the development of promising treatment strategies against leishmaniasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pim.12718 | DOI Listing |
Iran J Immunol
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
Eur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
Purpose: CD38 is a glycoprotein highly specific to multiple myeloma (MM). Therapeutics using antibodies targeting CD38 have shown promising efficacy. However, the efficient stratification of patients who may benefit from daratumumab (Dara) therapy and timely monitoring of therapeutic responses remain significant clinical challenges.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang, China.
Nanobodies (Nbs), the unique single-domain antibodies discovered in the species of Camelidae and sharks, are also known as the variable domain of the heavy chain of heavy-chain antibody (VHH). They offer strong antigen targeting and binding capabilities and overcome the drawbacks such as large size, low stability, high immunogenicity, and slow clearance of conventional antibodies. Nbs can be boosted by bioconjugation with toxins, enzymes, radioactive nucleotides, fluorophores, and other functional groups, demonstrating potential applications in the diagnosis and treatment of human and animal diseases.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
December 2024
Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies.
View Article and Find Full Text PDFMed Oncol
December 2024
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!