Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO uptake (K ), carbon isotope discrimination (δ C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ C and pyrenoid ultrastructure between high and low CO conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16577DOI Listing

Publication Analysis

Top Keywords

green algae
20
streptophyte algae
12
carbon-concentrating mechanism
8
chlorophyte streptophyte
8
streptophyte green
8
algae
8
algae rubisco
8
rubisco catalytic
8
catalytic properties
8
properties streptophyte
8

Similar Publications

The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH) affect physiology and gene expression using the freshwater alga sp. as the test species.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.

View Article and Find Full Text PDF

Betaine lipids: Biosynthesis, functional diversity and evolutionary perspectives.

Prog Lipid Res

January 2025

Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France. Electronic address:

Betaine lipids (BL) are relatively understudied non‑phosphorus glycerolipids. They are predominantly found in algae but have also been detected in other unicellular eukaryotes, fungi, bacteria, and some bryophytes and pteridophytes. These extraplastidial lipids are considered as substitute for phospholipids in organisms, particularly under phosphate (Pi) deficiency.

View Article and Find Full Text PDF

Spectroscopic technology is an effective method for estimating rice chlorophyll content. However, redundant spectral information and the complex background of rice in situ challenge the accuracy and robustness of the estimation. To address this problem, this study proposed a band selection method combining spectral color characteristics and established a convolutional neural network (CNN) model based on this method to estimate chlorophyll content of rice for black (background-free), clear, muddy, and green algae-covered backgrounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!