Malachite green (MG), a triphenylmethane dye is extensively used for coloring silk, aquaculture and textile industries, it has also has been reported toxic to life forms. This study aimed to investigate the biodegradation potential of MG by actinobacteria. The potent actinobacterial strain S20 used in this study was isolated from forest soil (Sabarimala, Kerala, India) and identified as Streptomyces chrestomyceticus based on phenotype and molecular features. Strain S20 degraded MG up to 59.65 ± 0.68% was studied in MSM medium and MG (300 mg l) and degradation was increased (90-99%) by additions of 1% glucose and yeast extract into the medium at pH 7. The treated metabolites from MG by S20 characterized by FT-IR and GC-MS. The results showed MG has been degraded into nontoxic compounds evaluated by (1) phytotoxic assay on Vigna radiata, (2) microbial toxicity on Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Streptococcus sp. and Escherichia coli, (3) cytotoxicity assay in a human cell line (MCF 7). The toxicity studies demonstrated that the byproducts from MG degradation by S. chrestomyceticus S20 were no toxic to plants and microbes and less toxic to human cells as compared to the parent MG. Perhaps this is the first work reported on biodegradation of MG by S. chrestomyceticus which could be a potential candidate for the removal of MG from various environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-020-02339-zDOI Listing

Publication Analysis

Top Keywords

malachite green
8
streptomyces chrestomyceticus
8
chrestomyceticus s20
8
strain s20
8
s20
5
microbial degradation
4
degradation spectral
4
spectral analysis
4
analysis toxicological
4
toxicological assessment
4

Similar Publications

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

A Molecular Logic Gate Enables Unconventional Super-resolution Same-Day Imaging of Lysosome Membrane in Live Cells.

Anal Chem

December 2024

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China.

Lysosomes are acidic membrane-bound organelles that aid digestion, excretion, and cell renewal. The lysosomal membranes are essential for maintaining lysosomal functions and cellular homeostasis. In this work, we developed a molecular "NOR" logic gate, , by introducing malachite green into the spirocyclic rhodamine.

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

Azo food dyes are prohibited in most countries, but their injudicious use is still reported particularly in the developing Nations. Continuous use of contaminated food raises health concerns and given this the present study designed to investigate the effects of 3 non-permitted azo dyes (metanil yellow - MY, malachite green - MG, and sudan III - SIII) on neurobehavioral, neurochemicals, mitochondrial dysfunction, oxidative stress, and histopathological changes in the corpus striatum of rats. Rats were grouped and treated with MY (430 mg/kg), MG (13.

View Article and Find Full Text PDF

Malachite green is a hazardous chemical that poses serious threats to aquatic ecosystems due to its toxicity and persistence in the environment. Additionally, it is harmful to human health, recognized as a carcinogenic and mutagenic agent that can cause long-term adverse effects. Hence, in this study, malachite green dye was efficiently removed from aqueous media using CoO/MgO/MgBO novel nanocomposites, known as CBM600 and CBM800.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!