Mouse hepatitis virus (MHV; murine coronavirus) causes meningoencephalitis, myelitis, and optic neuritis followed by axonal loss and demyelination. This murine virus is used as a common model to study acute and chronic virus-induced demyelination in the central nervous system. Studies with recombinant MHV strains that differ in the gene encoding the spike protein have demonstrated that the spike has a role in MHV pathogenesis and retrograde axonal transport. Fusion peptides (FPs) in the spike protein play a key role in MHV pathogenesis. In a previous study of the effect of deleting a single proline residue in the FP of a demyelinating MHV strain, we found that two central, consecutive prolines are important for cell-cell fusion and pathogenesis. The dihedral fluctuation of the FP was shown to be repressed whenever two consecutive prolines were present, in contrast to the presence of a single proline in the chain. Using this proline-deleted MHV strain, here we investigated whether intracranial injection of this strain can induce optic neuritis by retrograde axonal transport from the brain to the retina through the optic nerve. We observed that the proline-deleted recombinant MHV strain is restricted to the optic nerve, is unable to translocate to the retina, and causes only minimal demyelination and no neuronal death. We conclude that an intact proline dyad in the FP of the recombinant demyelinating MHV strain plays a crucial role in translocation of the virus through axons and subsequent neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242688PMC
http://dx.doi.org/10.1074/jbc.RA119.011918DOI Listing

Publication Analysis

Top Keywords

mhv strain
16
retrograde axonal
12
axonal transport
12
mhv
9
mouse hepatitis
8
hepatitis virus
8
virus mhv
8
optic neuritis
8
recombinant mhv
8
spike protein
8

Similar Publications

Unlabelled: The immunoproteasome (IP) is a predominantly inducible component of the ubiquitin proteasome system that plays key roles in multiple aspects of immune function, inflammation, and protein homeostasis. We used murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, to define the role of IP activity during acute coronavirus respiratory infection. Expression of the β5i subunit of the IP and cytokines that induce IP activity, including IFN-γ, TNF-α, and IFN-β, increased in lungs and livers of CH3/HeJ mice following intranasal infection with MHV-1.

View Article and Find Full Text PDF

The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect.

View Article and Find Full Text PDF

Gap junctions (GJs) play a crucial role in the survival of oligodendrocytes and myelination of the central nervous system (CNS). In this study, we investigated the spatiotemporal changes in the expression of oligodendroglial GJ protein connexin 47 (Cx47), its primary astroglial coupling partner, Cx43, and their association with demyelination following intracerebral infection with mouse hepatitis virus (MHV). Neurotropic strains of MHV, a β-coronavirus, induce an acute encephalomyelitis followed by a chronic demyelinating disease that shares similarities with the human disease multiple sclerosis (MS).

View Article and Find Full Text PDF

Introduction: Research quality can be improved with reliable and reproducible experimental results when animal experiments are conducted using laboratory animals with guaranteed microbiological and genetic quality through health monitoring. Therefore, health monitoring requires the rapid and accurate diagnosis of infectious diseases in laboratory animals.

Methods: This study presents a performance evaluation of a commercially available multiplex real-time PCR (mRT-PCR) assay for the rapid detection of 12 infectious pathogens (Set 1: Sendai virus [SeV, formally murine respirovirus], spp.

View Article and Find Full Text PDF

The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice: Parallels to the SARS-CoV-2 Virus.

J Neuroophthalmol

September 2024

Department of Biological Sciences (GK, JDS), Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India; and Department of Ophthalmology (JDS), University of Pennsylvania, Philadelphia, Pennsylvania.

Background: Optic neuritis (ON), one of the clinical manifestations of the human neurological disease multiple sclerosis (MS), was also reported in patients with COVID-19 infection, highlighting one potential neurological manifestation of SARS-CoV-2. However, the mechanism of ON in these patients is poorly understood.

Evidence Acquisition: Insight may be gained by studying the neurotropic mouse hepatitis virus (MHV-A59), a β-coronavirus that belongs to the same family as SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!