Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oncolytic viruses (OVs) are a class of biotherapeutics that are currently being explored for the treatment of cancer. While showing promise in several pre-clinical and clinical studies, systemic delivery of these anti-cancer agents is hampered by inefficient tumor targeting and a host immune system that is highly evolved to detect and neutralize pathogens. To shield the virus from immune recognition and destruction, the use of cells as delivery vehicles has been explored for the systemic delivery of OVs. Though several types of cell carriers are able to protect OVs during intravenous delivery, many still lack the ability to specifically home to or accumulate within the tumor microenvironment. Overall, OV-based therapeutics could benefit from tumor targeting strategies to maximize tumor-specific delivery and minimize infection of off-target tissues. In the current study, we examine magnetic targeting as a strategy to improve OV infection of tumor cells in vitro. We found that magnetic targeting of magnetically-labeled VSV particles or VSV-infected cell carriers resulted in increased infection and killing of tumor cells. Furthermore, this enhanced infection of target tumor cells was observed even in the presence of virus-specific neutralizing antibodies. Overall, our findings suggest that magnetic targeting strategies can improve the infection of tumor cells and may be a viable strategy to improve the tumor-targeted delivery of oncolytic VSV-based therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.03.135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!