Assembly of High-Spin [Fe] Clusters by Ligand-Based Multielectron Reduction.

J Am Chem Soc

Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Published: April 2020

The hexanuclear [NaFe(tris-cyclo-salophen)(THF)], , and the trinuclear [NaFe(tris-cyclo-salophen)(py)], , Fe(II) clusters can be easily assembled in one step from the ligand-based reduction of the [Fe(salophen)(THF)] complex. These complexes consist of triangular cores where three Fe(II) ions are held together, within range of bonding interaction, by the hexa-amide, hexaphenolate macrocyclic ligand . The ligand is perfectly suited for binding three Fe(II) centers at short distances, allowing for strong magnetic coupling between the Fe(II) centers. The macrocyclic ligand is generated by the reductive coupling of the imino groups of three salophen ligands, resulting in three new C-C bonds. The six electrons stored in the ligand become available for the reduction of carbon dioxide with selective formation of carbonate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c01664DOI Listing

Publication Analysis

Top Keywords

three feii
8
macrocyclic ligand
8
feii centers
8
assembly high-spin
4
high-spin [fe]
4
[fe] clusters
4
clusters ligand-based
4
ligand-based multielectron
4
multielectron reduction
4
reduction hexanuclear
4

Similar Publications

Extracellular electron shuttles induced transformation and mobilization of Fe/As with the occurrence of biogenic vivianite.

Ecotoxicol Environ Saf

January 2025

Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China. Electronic address:

Microorganisms that utilize organic matter to reduce Fe oxides/hydroxides constitute the primary geochemical processes controlling the formation of high-arsenic (As) groundwater. Biogenic secondary iron minerals play a significant role in As migration. However, the influence of quinone electron shuttles and competitive anionic phosphate on this process has not been thoroughly studied.

View Article and Find Full Text PDF

Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.

View Article and Find Full Text PDF

Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as "rust tanks" of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear.

View Article and Find Full Text PDF

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

The catalytic efficiency of M-Htpda pincer complexes (M=Mn(I), Fe(II), Co(III)) in CO hydrogenation, emphasizing the role of transition metal variability have been discussed. The DFT analysis demonstrates that complexes with low αR values form weaker M-H bonds, enhancing catalyst reactivity with the elongation of M-H bond. The analysis further displays excellent catalytic performance for Mn-Htpda (ΔE=20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!