BXSB/MpJ-Yaa mouse model of systemic autoimmune disease shows increased apoptotic germ cells in stage XII of the seminiferous epithelial cycle.

Cell Tissue Res

Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Japan.

Published: July 2020

In mammals, the reproductive system and autoimmunity regulate mutual functions. Importantly, systemic autoimmune diseases are thought to cause male infertility but the underlying pathological mechanism remains unclear. In this study, the morpho-function of the testes in BXSB/MpJ-Yaa mice was analyzed as a representative mouse model for systemic autoimmune diseases to investigate the effect of excessive autoimmunity on spermatogenesis. At 12 and 24 weeks of age, BXSB/MpJ-Yaa mice showed splenomegaly and increased levels of serum autoantibodies, whereas no controls showed a similar autoimmune condition. In histological analysis, the enlarged lumen of the seminiferous tubules accompanied with scarce spermatozoa in the epididymal ducts were observed in some of the BXSB/MpJ-Yaa and BXSB/MpJ mice but not in C57BL/6N mice. Histoplanimetrical analysis revealed significantly increased residual bodies and apoptotic germ cells in the seminiferous tubules in BXSB/MpJ-Yaa testes without apparent inflammation. Notably, in stage XII of the seminiferous epithelial cycles, the apoptotic germ cell number was remarkably increased, showing a significant correlation with the indices of systemic autoimmune disease in BXSB/MpJ-Yaa mice. Furthermore, the Sertoli cell number was reduced at the early disease stage, which likely caused subsequent morphological changes in BXSB/MpJ-Yaa testes. Thus, our histological study revealed the altered morphologies of BXSB/MpJ-Yaa testes, which were not observed in controls and statistical analysis suggested the effects of an autoimmune condition on this phenotype, particularly the apoptosis of meiotic germ cells. BXSB/MpJ-Yaa mice were shown to be an efficient model to study the relationship between systemic autoimmune disease and the local reproductive system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-020-03190-0DOI Listing

Publication Analysis

Top Keywords

systemic autoimmune
20
bxsb/mpj-yaa mice
16
autoimmune disease
12
apoptotic germ
12
germ cells
12
bxsb/mpj-yaa testes
12
bxsb/mpj-yaa
9
mouse model
8
model systemic
8
stage xii
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!