Dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion.

Int J Pharm

UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.

Published: May 2020

Corneal abrasion is a scratch wound on the surface of the anterior segment of the eye, which can predispose a patient to corneal infection and scarring, particularly if the cut penetrates to the deep corneal layers. Here we investigate a novel approach to co-administer an anti-scarring agent and an antibiotic, both being incorporated into one dosage form so as to accelerate wound closure and to treat any associated infection. More specifically, we have used electrospun fibers as a means of incorporating the two drugs into distinct compartments via coaxial electrospinning. Samples were characterised using a range of imaging, spectroscopic and thermal methods, while an HPLC assay has been developed to allow measurement of the concentration of both drug components in both the initial fibers and on release. Fibers loaded with pirfenidone in the hydrophobic polymer, PLGA, as the outer layer and moxifloxacin in the hydrophilic polymer PVP as the inner layer were successfully prepared, with smooth and non-porous surfaces and a mean diameter of circa 630 nm. TEM image demonstrated clear distinctive layers (a core and a shell), suggesting the successful preparation of the drug-loaded coaxial fibers, supported by HPLC entrapment studies, while fluorescence microscopy confirmed the presence of the moxifloxacin within the fibers. The fibers were capable of extending the release of both drugs, hence raising the possibility of a single daily dose of the drug-loaded coaxial fibers for the treatment of corneal abrasion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119296DOI Listing

Publication Analysis

Top Keywords

drug-loaded coaxial
12
corneal abrasion
12
treatment corneal
8
coaxial fibers
8
fibers
7
corneal
5
dual drug-loaded
4
coaxial
4
coaxial nanofibers
4
nanofibers treatment
4

Similar Publications

Treating diabetic retinopathy (DR) effectively is challenging, aiming for high efficacy with minimal discomfort. While intravitreal injection is the current standard, it has several disadvantages. Implantable systems offer an alternative, less invasive, with long-lasting effects drug delivery system (DDS).

View Article and Find Full Text PDF

Core-shell nanostructures are powerful platforms for the development of novel nanoscale drug delivery systems with sustained drug release profiles. Coaxial electrospinning is facile and convenient for creating medicated core-shell nanostructures with elaborate designs with which the sustained-release behaviors of drug molecules can be intentionally adjusted. With resveratrol (RES) as a model for a poorly water-soluble drug and cellulose acetate (CA) and PVP as polymeric carriers, a brand-new electrospun core-shell nanostructure was fabricated in this study.

View Article and Find Full Text PDF

Advancing inflammatory skin disease therapy: Sustained tofacitinib release via electrospun fiber dressings.

Eur J Pharm Biopharm

September 2024

Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Inflammatory skin diseases are typically managed with semi-solid formulations such as creams and ointments. These treatments often fail to remain on the skin for long, as they can be easily wiped off by clothing, necessitating frequent reapplication throughout the day and resulting in poor patient adherence. Therefore, this study sought to fabricate an electrospun dressing as an alternative dosage form that provides a sustained release of the anti-inflammatory agent tofacitinib over three days.

View Article and Find Full Text PDF

Ovarian cancer, the deadliest gynecological malignancy, primarily treated with chemotherapy. However, systemic chemotherapy often leads to severe toxic side effects and chemoresistance. Drug-loaded aerogels have emerged as a promising method for drug delivery, as they can improve drug solubility and bioavailability, control drug release, and reduce drug distribution in non-targeted tissues, thereby minimizing side effects.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization.

Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!