Recombinant vaccine against botulism in buffaloes: Evaluation of the humoral immune response over 12 months.

Anaerobe

Instituto de Medicina Veterinária, Universidade Federal do Pará, BR 316 Km 61, Saudade II, Cristo Redentor, Castanhal, 68740-910, PA, Brazil. Electronic address:

Published: June 2020

Botulism is a neuroparalytic intoxication, usually fatal, caused by the botulinum toxins (BoNTs). Vaccination is the best-known strategy to prevent this disease in ruminants. Serotypes C and D and their variants CD and DC are the main types responsible for botulism in bovine and buffaloes in Brazil and cattle in Japan and Europe. Brazil has a herd of approximately 1.39 million buffaloes and is the largest producer in the Western world. This study aimed to assess the humoral immune response of buffaloes during the 12-month period after vaccination against BoNT serotypes C and D with a recombinant vaccine in three different concentrations (100, 200, and 400 μg) of non-purified recombinant proteins (Vrec) and also with a bivalent commercial toxoid (Vcom). Vrec400 was the best vaccine among those tested because it induced higher levels of antibodies and maintained higher levels of antibodies for the longest time, while Vrec200 could be considered the most cost-effective vaccine for large-scale production. None of the vaccines were able to promote continuous immunological protection within the timeframe proposed by the current Brazilian vaccination protocol. Further studies should focus on vaccine adjustments to ensure continued humoral protection against botulism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2020.102201DOI Listing

Publication Analysis

Top Keywords

recombinant vaccine
8
humoral immune
8
immune response
8
higher levels
8
levels antibodies
8
botulism
4
vaccine botulism
4
buffaloes
4
botulism buffaloes
4
buffaloes evaluation
4

Similar Publications

Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.

View Article and Find Full Text PDF

Preparation and application of a multiepitope fusion protein based on bioinformatics and Tandem Mass Tag-based proteomics technology.

Front Immunol

January 2025

Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, China.

Introduction: Brucellosis is a widespread zoonotic disease that poses a considerable challenge to global public health. Existing diagnostic methods for this condition, such as serological assays and bacterial culture, encounter difficulties due to their limited specificity and high operational complexity. Therefore, there is an urgent need for the development of enhanced diagnostic approaches for brucellosis.

View Article and Find Full Text PDF

INO-4800 represents a DNA-based vaccine encoding the spike protein of SARS-CoV-2. This phase 2 trial evaluated the immunogenicity and safety of INO-4800 as a primary vaccination series in adults. We conducted a randomized, observer-blind, placebo-controlled phase 2 trial of intradermal injection of INO-4800 in both healthy adults and elderly individuals.

View Article and Find Full Text PDF

Background: Due to high costs of pneumococcal conjugate vaccines (PCV), transitioning from a two (2 + 1) to a single dose (1 + 1) primary series with a booster should be considered. This study evaluated the immune response at 18 months of age following a 1 + 1 compared to a 2 + 1 schedule of 10-valent (PCV10) and 13-valent (PCV13) vaccines.

Research Design And Methods: A single-center, open-label, randomized trial conducted in Soweto, South Africa, evaluated the immunogenicity of differing dosing schedule for PCV10 and PCV13.

View Article and Find Full Text PDF

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!