Adipose-derived mesenchymal stromal cells reverse high glucose-induced reduction of angiogenesis in human retinal microvascular endothelial cells.

Cytotherapy

Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany; Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany. Electronic address:

Published: May 2020

Background Aims: Diabetic retinopathy (DR) is characterized by a progressive alteration of the retinal microvasculature, arising from microaneurysms to leaky vessels and finally abnormal neovascularization. The hyperglycemia-mediated loss of pericytes is a key event in vessel degeneration causing vascular destabilization. To overcome this, mesenchymal stromal cells (MSCs) have been tested as pericyte replacement in several animal models showing repair and regeneration of DR-damaged vasculature.

Methods: We hypothesized that adipose-derived mesenchymal stromal cells (ASCs) resist high glucose-induced challenges and protect human retinal microvascular endothelial cells (HRMVECs) from glucose-mediated injury. ASCs and HRMVECs were cultured under normal-glucose (NG; 1 g/L) and high-glucose (HG; 4.5 g/L) conditions comparing their phenotype and angiogenic potential.

Results: Whereas ASCs were generally unaffected by HG, HG caused a reduction of the angiogenic potential in HRMVEC. Indeed, HG-treated HRMVECs formed fewer vascular tube structures in a basement membrane angiogenesis assay. However, this was not observed in a direct ASC and HRMVEC coculture angiogenesis assay. Increased oxidative stress levels appeared to be linked to the HG-induced reduction of angiogenesis, which could be restored by ASC-conditioned medium and antioxidant treatment.

Conclusions: These findings suggest that ASC resist HG-stress whereas endothelial cell angiogenic capacity is reduced. Thus, ASC may be potentially therapeutically active in DR by restoring angiogenic deficits in retinal endothelial cells by the secretion of proangiogenic factors. However, these data also inquire for a thorough risk assessment about the timing of the ASC-based cell therapy, which can be considered advantageous at early stage of DR, but possibly detrimental at the late neo-angiogenic stage of DR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2020.02.005DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
12
stromal cells
12
endothelial cells
12
adipose-derived mesenchymal
8
high glucose-induced
8
reduction angiogenesis
8
human retinal
8
retinal microvascular
8
microvascular endothelial
8
angiogenesis assay
8

Similar Publications

Nuclear factor I-C regulates intramembranous bone formation via control of FGF signalling.

Heliyon

January 2025

Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.

View Article and Find Full Text PDF

Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.

View Article and Find Full Text PDF

Objective: To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies.

Method: The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors.

View Article and Find Full Text PDF

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation.

In Vitro Model

December 2024

Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.

Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!