Endosomal sorting pathways in the pathogenesis of Parkinson's disease.

Prog Brain Res

Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States. Electronic address:

Published: January 2021

The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206894PMC
http://dx.doi.org/10.1016/bs.pbr.2020.02.001DOI Listing

Publication Analysis

Top Keywords

endosomal sorting
16
sorting pathways
12
parkinson's disease
8
gene products
8
auxilin synaptojanin-1
8
endosomal
4
pathways
4
pathways pathogenesis
4
pathogenesis parkinson's
4
disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!