A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr (VI) by Zhihengliuella sp. ISTPL4. | LitMetric

The current study presents a comprehensive analysis of the potential of actinobacterium Zhihengliuella sp. ISTPL4 and different composite materials for the removal of hexavalent chromium [Cr (VI)]. Genome analysis of strain indicated the presence of several oxidoreductases which includes chromate reductase, nitrate reductase, thioredoxin, superoxide dismutase and hydrogenase are other major candidate genes. Catalytic calcite-based bio-composite material was absorbed on biochar had highest Cr removal efficiency. The main mechanism involved in Cr biosorption by this strain was explained by the Langmuir isotherm model; under equilibrium conditions the maximum adsorption was observed 49 ± 0.3 mgg. Kinetic studies showed that biosorption of Cr (VI) by this strain was a rate-limiting step and followed a pseudo-second-order kinetics (R2 = 0.99). SEM analysis is in line with EDX result indicating highest Cr removal by calcined biochar. MTT assay shown that the bacteria successfully convert toxic Cr (VI) to comparatively less toxic form such as Cr (III).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123262DOI Listing

Publication Analysis

Top Keywords

calcite-based bio-composite
8
zhihengliuella istpl4
8
highest removal
8
biosorption strain
8
synthesis calcite-based
4
bio-composite biochar
4
biochar enhanced
4
enhanced biosorption
4
biosorption detoxification
4
detoxification chromium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!