Soil pollution from heavy metals poses a serious risk for environment and public health. Phytoremediation is an eco-friendly and cheaper alternative compared to chemical-physical techniques. We carried out in vitro tests where three microorganisms Trichoderma harzianum, Saccharomyces cerevisiae and Wickerhamomyces anomalus were exposed to eight different heavy metals (one metal at a time) in order to evaluate resistance, growth and bioaccumulation capability for each metal (Ni, Cd, Cu, V, Zn, As, Pb, Hg). Taking into account the natural characteristics of T. harzianum, (resistance to environmental stress, resistance to pathogenic fungi, ability to establish symbiotic relationships with superior green plants) and the good bioaccumulation capacity for V, As, Cd, Hg, Pb shown after in vitro tests, it was chosen as a microorganism to be used in greenhouse tests. Controlled exposure tests were performed in greenhouse, where Arundo donax and mycorrhized Arundo donax with T. harzianum were exposed for 7 months at two different doses (L1 and L2) of a heavy metal mix, so as to assess whether the symbiotic association could improve the bioaccumulation capability of the superior green plant A. donax. Heavy metals were determined with ICP-MS. The average bioaccumulation percentage values of A. donax for L1 and L2 were, respectively: Ni (31%, 26%); Cd (35%, 50%); Cu (30%, 35%); As (19%, 27%); Pb (18%, 14%); Hg (42%, 45%); V (39%, 26%); Zn (23%, 9%). The average bioaccumulation percentage values of mycorrhized A. donax with T. harzianum for L1 and L2 were, respectively: Ni (27%, 38%); Cd (44%, 42%); Cu (36%, 29%); As (17%, 23%); Pb (37%, 54%); Hg (44%, 60%); V (16%, 20%); Zn (14%, 7%). A. donax showed the highest BAF (bioaccumulation factor) for Cd (0.50), Cu (0.35), As (0.27) and Hg (0.45) after exposure to L2; mycorrhized A. donax with T. harzianum showed the highest BAF for Ni (0.38), Cd (0.42), Pb (0.54) and Hg (0.60) after exposure to L2. A. donax showed the highest TF (translocation factor) values for Cd (0.28) and Hg (0.26) after exposition at L1 and L2 respectively; A. donax mycorrhized with T. harzianum showed the highest TF values for Cd (0.70), As (0.56), V (0.24), Pb (0.18) after exposition at L2, and Zn (0.30) after exposition at L1. Our study showed a good growth capability in contaminated soils and a good bioaccumulation capability of heavy metals, both for A. donax and mycorrhized A. donax with T. harzianum. Furthermore, for three metals (Ni, Pb and Hg) the bioaccumulation capability was improved by the symbiosis of T. harzianum with A. donax. So, these results proved the suitability both for A. donax and mycorrhized A. donax with T. harzianum for phytoremediation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2020.109427 | DOI Listing |
Environ Sci Technol
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFFood Chem X
January 2025
Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
Soil contamination with heavy metals poses a significant health risk as these metals can be transferred to humans through agricultural products. This study aimed to identify pumpkin varieties with low cadmium and arsenic accumulation. To this end, we evaluated 25 pumpkin varieties.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!