We report an analysis of the aqueous humor (AH) metabolome of primary open angle glaucoma (POAG) in comparison to normal controls. The AH samples were obtained from human donors [control (n = 35), POAG (n = 23)]. The AH samples were subjected to one-dimensional H nuclear magnetic resonance (NMR) analyses on a Bruker Avance 600 MHz instrument with a 1.7 mM NMR probe. The same samples were then subjected to isotopic ratio outlier analysis (IROA) using a Q Exactive orbitrap mass spectrometer after chromatography on an Accela 600 HPLC. Clusterfinder Build 3.1.10 was used for identification and quantification based on long-term metabolite matrix standards. In total, 278 metabolites were identified in control samples and 273 in POAG AH. The metabolites identified were fed into previously reported proteome and genome information and the OmicsNet interaction network generator to construct a protein-metabolite interactions network with an embedded protein-protein network. Significant differences in metabolite composition in POAG compared to controls were identified indicating potential protein/gene pathways associated with these metabolites. These results will expand our previous understanding of the impeded AH metabolite composition, provide new insight into the regulation of AH outflow, and likely aid in future AH and trabecular meshwork multi-omics network analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229990 | PMC |
http://dx.doi.org/10.1016/j.exer.2020.108024 | DOI Listing |
Sci Rep
January 2025
Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
To describe the management and clinical course of 12 cases of pseudophakic aqueous misdirection syndrome (AMS). Twelve eyes of 12 Patients diagnosed with pseudophakic AMS between 2021 and 2022 were included. Best-corrected visual acuity, refraction, intraocular pressure (IOP), anti-glaucomatous medication, spectral domain ocular coherence tomography (SD-OCT) and postoperative complications were evaluated.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Hospital Universitario de La Princesa, C/Diego de Leon, 62, 28006, Madrid, Spain.
Purpose: To compare iridian Swept-Source Anterior Segment OCT (SS-AS-OCT) and microbiological features in Aqueous Humor (AH) in patients with Fuchs Uveitis Syndrome (FUS) and Posner-Schlossman Syndrome (PSS).
Methods: Comparative, retrospective-prospective single center study examining 131 eyes from 66 patients, including 33 eyes with PSS, 37 eyes with FUS, and 61 healthy eyes. AH samples were collected from affected eyes in all patients.
Invest Ophthalmol Vis Sci
January 2025
Singapore Eye Research Institute, Singapore.
Purpose: To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS).
Methods: In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls).
Invest Ophthalmol Vis Sci
January 2025
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States.
Purpose: Aqueous humor inflow rate, a key parameter influencing aqueous humor dynamics, is typically measured by fluorophotometry. Analyzing fluorophotometric data depends, inter alia, on the volume of aqueous humor in the anterior chamber but not the posterior chamber. Previous fluorophotometric studies of the aqueous inflow rate in mice have assumed the ratio of anterior:posterior volumes in mice to be similar to those in humans.
View Article and Find Full Text PDFPharmaceutics
November 2024
Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China.
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!