Quantitative Analysis of Single Quantum Dot Trajectories.

Methods Mol Biol

Department of Chemistry, Vanderbilt University, Nashville, TN, USA.

Published: March 2021

Single quantum dot tracking (SQDT) is a powerful technique for interrogating biomolecular dynamics in living cells and tissue. SQDT has particularly excelled in driving discovery at the single-molecule level in the fields of neuronal communication, plasma membrane organization, viral infection, and immune system response. Here, we briefly characterize various elements of the SQDT analytical framework and provide the reader with a detailed set of executable commands to implement commonly used algorithms for SQDT data processing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0463-2_6DOI Listing

Publication Analysis

Top Keywords

single quantum
8
quantum dot
8
quantitative analysis
4
analysis single
4
dot trajectories
4
trajectories single
4
dot tracking
4
sqdt
4
tracking sqdt
4
sqdt powerful
4

Similar Publications

Atomically precise donor-based quantum devices are a promising candidate for solid-state quantum computing and analog quantum simulations. However, critical challenges in atomically precise fabrication have meant systematic, atomic scale control of the tunneling rates and tunnel coupling has not been demonstrated. Here using a room-temperature grown locking layer and precise control over the entire fabrication process, we reduce unintentional dopant movement while achieving high quality epitaxy in scanning tunnelling microscope (STM)-patterned devices.

View Article and Find Full Text PDF

Quantum dots (QDs) are promising materials for optoelectronic applications, but their widespread adoption requires controllable, selective, and scalable deposition methods. While traditional methods like spin coating and drop casting are suitable for small-scale deposition onto flat substrates, and ink-jet printing offers precision for small areas, these methods struggle with conformal deposition onto non-planar, large area substrates or selective deposition onto large area chips. Electrophoretic deposition (EPD) is an efficient and versatile technique capable of achieving conformal and selective area deposition over large areas, but its application to QD films has been limited.

View Article and Find Full Text PDF

A fault tolerant CSA in QCA technology for IoT devices.

Sci Rep

January 2025

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.

View Article and Find Full Text PDF

Nature and stability of the chemical bond in H3C-XHn (XHn = CH3, NH2, OH, F, Cl, Br, I).

J Chem Phys

January 2025

Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands, https://www.theochem.nl.

We have quantum chemically analyzed the trends in bond dissociation enthalpy (BDE) of H3C-XHn single bonds (XHn = CH3, NH2, OH, F, Cl, Br, I) along three different dissociation pathways at ZORA-BLYP-D3(BJ)/TZ2P: (i) homolytic dissociation into H3C∙ + ∙XHn, (ii) heterolytic dissociation into H3C+ + -XHn, and (iii) heterolytic dissociation into H3C- + +XHn. The associated BDEs for the three pathways differ not only quantitatively but, in some cases, also in terms of opposite trends along the C-X series. Based on activation strain analyses and quantitative molecular orbital theory, we explain how these differences are caused by the profoundly different electronic structures of, and thus bonding mechanisms between, the resulting fragments in the three different dissociation pathways.

View Article and Find Full Text PDF

A reconfigurable entanglement distribution network suitable for connecting multiple ground nodes with a satellite.

EPJ Quantum Technol

January 2025

Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1 Ontario Canada.

Satellite-based quantum communication channels are important for ultra-long distances. Given the short duration of a satellite pass, it can be challenging to efficiently connect multiple users of a city-wide network while the satellite is passing over that area. We propose a network with dual-functionality: during a brief satellite pass, the ground network is configured as a multipoint-to-point topology where all ground nodes establish entanglement with a satellite receiver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!