Low density materials can control plasma properties of laser absorption, which can enhance quantum beam generation. The recent practical extreme ultraviolet light (EUV) is the first industrial example of laser plasma source with low density targets. Here we propose an easy-handling target source based on a hollow sub-millimeter microcapsule fabricated from polyelectrolyte cationic and anionic surfactant on air bubbles. The lightweight microcapsules acted as a scaffold for surface coating by tin (IV) oxide nanoparticles (22-48%), and then dried. As a proof of concept study, the microcapsules were ablated with a Nd:YAG laser (7.1 × 10 W/cm, 1 ns) to generate 13.5 nm EUV relatively directed to laser incidence. The laser conversion efficiency (CE) at 13.5 nm 2% bandwidth from the tin-coated microcapsule (0.8%) was competitive compared with bulk tin (1%). We propose that microcapsule aggregates could be utilized as a potential small scale/compact EUV source, and future quantum beam sources by changing the coating to other elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125169 | PMC |
http://dx.doi.org/10.1038/s41598-020-62858-3 | DOI Listing |
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.
ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 20092, China.
In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼L^{α}(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, Shaanxi, People's Republic of China.
Electron-nuclear coupling plays a crucial role in strong laser induced molecular dissociation dynamics. The interplay between electronic and nuclear degrees of freedom determines the pathways and outcomes of molecular fragmentation. However, a full quantum mechanical treatment of electron-nuclear dynamics is computationally intensive.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
Imaged capillary isoelectric focusing was successfully applied for separating an in-house synthesized closely related peptide pair, that is, a linear 12-mer (Rp5-L) and its cyclic 15-mer variant (Rp5-C). Rp5-L represents a mimotope, that is, an epitope mimicking peptide, of the CD20 antigen, which is over-expressed in B-cell-related tumors. Peptide identity-including the successful disulfide bond formation in Rp5-C-was confirmed with matrix-assisted laser desorption ionization-time of flight mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!