The syncytiotrophoblast is a multinucleated layer that plays a critical role in regulating functions of the human placenta during pregnancy. Maintaining the syncytiotrophoblast layer relies on ongoing fusion of mononuclear cytotrophoblasts throughout pregnancy, and errors in this fusion process are associated with complications such as preeclampsia. While biochemical factors are known to drive fusion, the role of disease-specific extracellular biophysical cues remains undefined. Since substrate mechanics play a crucial role in several diseases, and preeclampsia is associated with placental stiffening, we hypothesize that trophoblast fusion is mechanically regulated by substrate stiffness. We developed stiffness-tunable polyacrylamide substrate formulations that match the linear elasticity of placental tissue in normal and disease conditions, and evaluated trophoblast morphology, fusion, and function on these surfaces. Our results demonstrate that morphology, fusion, and hormone release is mechanically-regulated via myosin-II; optimal on substrates that match healthy placental tissue stiffness; and dysregulated on disease-like and supraphysiologically-stiff substrates. We further demonstrate that stiff regions in heterogeneous substrates provide dominant physical cues that inhibit fusion, suggesting that even focal tissue stiffening limits widespread trophoblast fusion and tissue function. These results confirm that mechanical microenvironmental cues influence fusion in the placenta, provide critical information needed to engineer better in vitro models for placental disease, and may ultimately be used to develop novel mechanically-mediated therapeutic strategies to resolve fusion-related disorders during pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125233 | PMC |
http://dx.doi.org/10.1038/s41598-020-62659-8 | DOI Listing |
Virus Res
December 2024
Department of Virology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy.
Among flaviviruses, Zika virus (ZIKV) is the only arbovirus officially recognized as a teratogenic agent, as a consequence of its ability to infect and cross the placental barrier causing congenital malformation in the fetus. While many studies have focused on understanding ZIKV pathogenesis during pregnancy, the viral mechanisms affecting fetal development remain largely unclear. In this study, we investigated ZIKV virulence in placental trophoblasts, using viruses with distinct lipid profiles.
View Article and Find Full Text PDFSci Rep
October 2024
Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia.
Successful embryo implantation relies on synchronized dialog between the embryo and endometrium, and the role of extracellular vesicles (EVs) in facilitating this cross-talk has been recently established. In our previous study, milk fat globule-EGF factor 8 protein (MFGE8) was identified as increasing in receptive endometrial epithelial cells (EECs) in response to trophoblastic EVs. However, the dynamics of MFGE8 protein in this context are not completely understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 14220, Czech Republic.
Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors.
View Article and Find Full Text PDFGenes (Basel)
August 2024
Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland.
Pregnancy-associated glycoproteins (PAGs) are a polygenic family with many scattered genes and pseudogenes resulting from the duplication or fusion of a pseudogene with expression beginning in the trophoblast during the peri-implantation period and continuing in the trophectoderm. In this study, single-nucleotide polymorphism (SNP) and insertion/deletion (InDels) in the open reading frame (nine exons) of crossbreed pigs are reported for the first time. Novel SNPs/InDels were researched using genomic DNA templates isolated from the leukocytes of crossbreed pigs (N = 25), which were amplified, gel-out-purified, and sequenced.
View Article and Find Full Text PDFPregnancy is a critical point of vulnerability to infection and other insults that could compromise proper fetal development. The placenta acts as a protective and nutrient-permeable barrier to most infectious agents, but a few are capable of bypassing its defenses. Remarkably little is known about how exposure to these select pathogens might impact ongoing placental development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!