Ischemic exercise conducted as low-load blood flow restricted resistance exercise (BFRE) can lead to muscle remodelling and promote muscle growth, possibly through activation of muscle precursor cells. Cell activation can be triggered by blood borne extracellular vesicles (EVs) as these nano-sized particles are involved in long distance signalling. In this study, EVs isolated from plasma of healthy human subjects performing a single bout of BFRE were investigated for their change in EV surface profiles and miRNA cargos as well as their impact on skeletal muscle precursor cell proliferation. We found that after BFRE, five EV surface markers and 12 miRNAs were significantly altered. Furthermore, target prediction and functional enrichment analysis of the miRNAs revealed several target genes that are associated to biological pathways involved in skeletal muscle protein turnover. Interestingly, EVs from BFRE plasma increased the proliferation of muscle precursor cells. In addition, alterations in surface markers and miRNAs indicated that the combination of exercise and ischemic conditioning during BFRE can stimulate blood cells to release EVs. These results support that BFRE promotes EV release to engage in muscle remodelling and/or growth processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125173PMC
http://dx.doi.org/10.1038/s41598-020-62456-3DOI Listing

Publication Analysis

Top Keywords

muscle precursor
12
resistance exercise
8
extracellular vesicles
8
muscle remodelling
8
precursor cells
8
skeletal muscle
8
surface markers
8
markers mirnas
8
muscle
7
bfre
6

Similar Publications

Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.

Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.

View Article and Find Full Text PDF

Objectives: To examine the effect of the NAD precursor, nicotinic acid (NA), for improving skeletal muscle status in sedentary older people.

Methods: In a double-blind, randomised, placebo-controlled design, 18 sedentary yet otherwise healthy older (65-75 y) males were assigned to 2-weeks of NA (acipimox; 250 mg × 3 daily, n=8) or placebo (PLA, n=10) supplementation. At baseline, and after week 1 and week 2 of supplementation, a battery of functional, metabolic, and molecular readouts were measured.

View Article and Find Full Text PDF

Myoblast-derived ADAMTS-like 2 promotes skeletal muscle regeneration after injury.

NPJ Regen Med

December 2024

Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Skeletal muscle regeneration and functional recovery after minor injuries requires the activation of muscle-resident myogenic muscle stem cells (i.e. satellite cells) and their subsequent differentiation into myoblasts, myocytes, and ultimately myofibers.

View Article and Find Full Text PDF

Body composition in prepubertal children with idiopathic premature adrenarche: implications for cardiometabolic health.

Pediatr Res

December 2024

The Institute of Pediatric Endocrinology, Diabetes and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Background: Premature adrenarche (PA) has been reported as a potential precursor of metabolic disease. We aimed to explore the interaction between body composition and cardiometabolic health of prepubertal children with PA.

Methods: This observational study comprised of 87 children with PA (15 boys, 8.

View Article and Find Full Text PDF

Fried muscle foods are popular among consumers for their golden color, fried flavor, and crispy exterior paired with a tender interior. However, physicochemical reactions occurring during frying lead to the formation of harmful components. This review focuses on the formation mechanisms of excessive oil and Maillard reaction products (advanced glycation end products, and heterocyclic amines) in fried muscle foods including protein oxidation, starch gelatinization, and generation of carbonyls and free radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!