Rapalogs have become standard-of-care in patients with metastatic breast, kidney, and neuroendocrine cancers. Nevertheless, tumor escape occurs after several months in most patients, highlighting the need to understand mechanisms of resistance. Using a panel of cancer cell lines, we show that rapalogs downregulate the putative protein kinase TRIB3 (tribbles pseudokinase 3). Blood samples of a small cohort of patients with cancer treated with rapalogs confirmed downregulation of TRIB3. Downregulation of TRIB3 was mediated by LRRFIP1 independently of mTOR and disrupted its interaction with the spliceosome, where it participated in rapalog-induced deregulation of RNA splicing. Conversely, overexpression of TRIB3 in a panel of cancer cell lines abolished the cytotoxic effects of rapalogs. These findings identify TRIB3 as a key component of the spliceosome, whose repression contributes significantly to the mechanism of resistance to rapalog therapy. SIGNIFICANCE: Independent of mTOR signaling, rapalogs induce cytoxicity by dysregulating spliceosome function via repression of TRIB3, the loss of which may, in the long term, contribute to therapeutic resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-2366DOI Listing

Publication Analysis

Top Keywords

tribbles pseudokinase
8
panel cancer
8
cancer cell
8
cell lines
8
downregulation trib3
8
trib3
6
rapalogs
5
rapalog-mediated repression
4
repression tribbles
4
pseudokinase regulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!