Purpose: The second edition of the artificial intelligence (AI) data challenge was organized by the French Society of Radiology with the aim to: (i), work on relevant public health issues; (ii), build large, multicentre, high quality databases; and (iii), include three-dimensional (3D) information and prognostic questions.

Materials And Methods: Relevant clinical questions were proposed by French subspecialty colleges of radiology. Their feasibility was assessed by experts in the field of AI. A dedicated platform was set up for inclusion centers to safely upload their anonymized examinations in compliance with general data protection regulation. The quality of the database was checked by experts weekly with annotations performed by radiologists. Multidisciplinary teams competed between September 11 and October 13 2019.

Results: Three questions were selected using different imaging and evaluation modalities, including: pulmonary nodule detection and classification from 3D computed tomography (CT), prediction of expanded disability status scale in multiple sclerosis using 3D magnetic resonance imaging (MRI) and segmentation of muscular surface for sarcopenia estimation from two-dimensional CT. A total of 4347 examinations were gathered of which only 6% were excluded. Three independent databases from 24 individual centers were created. A total of 143 participants were split into 20 multidisciplinary teams.

Conclusion: Three data challenges with over 1200 general data protection regulation compliant CT or MRI examinations each were organized. Future challenges should be made with more complex situations combining histopathological or genetic information to resemble real life situations faced by radiologists in routine practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diii.2020.03.006DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence data
8
data challenges
8
general data
8
data protection
8
protection regulation
8
data
5
three
4
three artificial
4
challenges based
4

Similar Publications

Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.

Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases.

Small

January 2025

Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.

Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.

View Article and Find Full Text PDF

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!