In this study, the effects of ultrasonic on melt pool dynamic, microstructure, and properties of underwater wet flux-cored arc welding (FCAW) joints were investigated. Ultrasonic vibration enhanced melt flow and weld pool oscillation. Grain fragmentation caused by cavitation changed microstructure morphology and decreased microstructure size. The proportion of polygonal ferrite (PF) reduced or even disappeared. The width of grain boundary ferrite (GBF) decreased from 34 to 10 μm, and the hardness increased from 204 to 276 HV. The tensile strength of the joint increased from 545 to 610 MPa, and the impact toughness increased from 65 to 71 J/mm due to the microstructure refinement at the optimum ultrasonic power.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142934PMC
http://dx.doi.org/10.3390/ma13061442DOI Listing

Publication Analysis

Top Keywords

underwater wet
8
investigating advantages
4
advantages ultrasonic-assisted
4
ultrasonic-assisted welding
4
welding technique
4
technique applied
4
applied underwater
4
wet welding
4
welding in-situ
4
in-situ x-ray
4

Similar Publications

Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.

View Article and Find Full Text PDF

The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.

View Article and Find Full Text PDF

Effects of Polyol Types on Underwater Curing Properties of Polyurethane.

Polymers (Basel)

December 2024

CNBM Zhongyan Technology Co., Ltd., Beijing 100024, China.

This study aims to develop castable polyurethane suitable for applications on wet substrates or underwater construction. Polyurethanes were synthesized using various polyols with similar hydroxyl values, including poly(tetrahydrofuran) polyol, polyester polyol, castor oil-modified polyol, soybean oil-modified polyol, and cashew nut shell oil-modified polyol. The corresponding polyurethane curing products were evaluated for their underwater curing characteristics by volume expansion ratios and adhesion strength on dry and wet substrates, combined with analyses of reaction exothermic behavior, wetting properties on dry and wet substrates, interfacial tension, and microstructure characterization from the perspectives of reaction activity and water solubility.

View Article and Find Full Text PDF

Marine and terrestrial organisms often utilise EGF/EGF-like domains in wet adhesives, yet their roles in adhesion remain unclear. Here, we investigate the Barbatia virescense byssal system and uncover an oxidation-independent, reversible, and robust adhesion mechanism where EGF/EGF-like domain tandem repetitions in adhesive proteins bind robustly to GlcNAc-based biopolymer. EGF/EGF-like-domain-containing proteins demonstrate over three-fold superior underwater adhesion to chitosan compared to the well-known strongest wet-adhesive proteins, mefp-5, and suckerin, when adhering to mica in an surface forces apparatus-based measurement.

View Article and Find Full Text PDF

Bio-inspired anti-swelling amyloid-fiber lysozyme adhesive for rapid wound closure and hemostasis.

Biomater Sci

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Instant adhesion to wet biological surfaces and reduced swelling of tissue adhesives are crucial for rapid wound closure and hemostasis. However, previous strategies to reduce swelling were always accompanied by a decrease in the tissue bonding strength of the adhesive. Moreover, the irreducibility of the covalent bonds in currently reported adhesives results in the adhesives losing their tissue adhesive ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!