Corrosion influenced by microbes, commonly known as microbiologically induced corrosion (MIC), is associated with biofilm, which has been one of the problems in the industry. The damages of industrial equipment or infrastructures due to corrosion lead to large economic and environmental problems. Synthetic chemical biocides are now commonly used to prevent corrosion, but most of them are not effective against the biofilms, and they are toxic and not degradable. Biocides easily kill corrosive bacteria, which are as the planktonic and sessile population, but they are not effective against biofilm. New antimicrobial and eco-friendly substances are now being developed. Biosurfactants are proved to be one of the best eco-friendly anticorrosion substances to inhibit the biocorrosion process and protect materials against corrosion. Biosurfactants have recently became one of the important products of bioeconomy with multiplying applications, while there is scare knowledge on their using in biocorrosion treatment. In this review, the recent findings on the application of biosurfactants as eco-friendly and innovative biocides against biocorrosion are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139319PMC
http://dx.doi.org/10.3390/ijms21062152DOI Listing

Publication Analysis

Top Keywords

biosurfactants eco-friendly
8
eco-friendly innovative
8
innovative biocides
8
biocides biocorrosion
8
corrosion
5
biosurfactants
4
biocides
4
biocorrosion
4
biocorrosion corrosion
4
corrosion influenced
4

Similar Publications

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Biosurfactants: A review of different strategies for economical production, their applications and recent advancements.

Adv Colloid Interface Sci

January 2025

Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:

Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using waste frying oil as a carbon source to produce cost-effective rhamnolipids, overcoming common production barriers.
  • Optimal conditions for rhamnolipid production were identified, resulting in a yield of 2.97 g/l at specific temperature, pH, and incubation time.
  • The research indicates that using Halopseudomonas sabulinigri OZK5 for biosurfactant production is a promising biotechnological approach due to its eco-friendliness and efficiency.
View Article and Find Full Text PDF

Background: The increasing industrialization and hydrocarbon use have led to concerning soil contamination. Oil spills and improper disposal of oily waste pose threats to ecosystems and human health. The recovery of these environments is essential, but separating oily components from soil remains challenging.

View Article and Find Full Text PDF

Aims: Biosurfactants are valuable eco-friendly compounds with broad industrial applications, particularly when produced sustainably using yeast and renewable carbon sources. Despite the potential of yeast in biosurfactant synthesis, little is known about the specific gene expression changes underlying this process. This study investigates the genetic response of Wickerhamomyces anomalus CCMA 0358 to biosurfactant production using waste cooking oil (WCO) as a low-cost carbon source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!