AI Article Synopsis

  • The paper introduces a new type of super wideband antenna known as the s-shape monopole, featuring stepped meander lines and a defected ground structure (DGS) for enhanced performance in wireless communication applications.
  • The antenna measures 35 mm on all sides, operating effectively across a significant frequency range, with Antenna 1 achieving a bandwidth of 18.2 GHz and Antenna 2 reaching a super wide bandwidth of 37.82 GHz.
  • With an impressive fractional bandwidth of 174.68% and a maximum gain of 5.9 dBi, the antenna demonstrates excellent efficiency and good time-domain performance, making it suitable for diverse modern communication technologies.

Article Abstract

This paper presents a new shape (s-shape monopole) of a super wideband antenna using stepped meander lines, a quarter waveguide transformer feeding line, and a defected ground structure (DGS). The antenna will be used for multiple wireless communication applications like WIMAX/WLAN/ISM/UWB, and also for several wireless communication applications. The total dimensions of the proposed antenna are 35 mm × 35 mm × 1.57 mm or 0.36 λo × 0.36 λo × 0.016 λo, which are the corresponding electrical dimensions with free-space wavelength (λo) at the lower operating frequency. The antenna is designed and simulated into two steps: the first (Antenna 1) covers a bandwidth of 18.2 GHz, while the second (Antenna 2, using DGS) covers a super wide bandwidth of 37.82 GHz (3.08-40.9 GHz). The measured fractional bandwidth and bandwidth ratio of the antenna are 174.68% and 13.009:1, respectively, which is operating from 3.09-40.2 GHz. The maximum calculated gain and efficiency are 5.9 dBi and 92.7%, respectively. The time-domain performance is good due to the calculation of the system fidelity factor, group delay, and its linear and constant phase variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146249PMC
http://dx.doi.org/10.3390/s20061735DOI Listing

Publication Analysis

Top Keywords

wireless communication
12
communication applications
12
super wide
8
defected ground
8
ground structure
8
structure dgs
8
stepped meander
8
antenna
8
036 λo
8
wide band
4

Similar Publications

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

This article considers elite and popular attitudes to speech and accent in inter-war Britain, specifically with regard to children and young people. It begins by showing that speech was a consistent preoccupation of educationalists, for whom classed prejudices complemented more progressive concerns about citizenship and employment. It continues by considering everyday school practices, charting the ways in which schools tried to influence their pupils' speech.

View Article and Find Full Text PDF

Supporting rotational grazing systems with virtual fencing: paddock transitions, beef heifer performance, and stress response.

Animal

December 2024

Department of Crop Sciences, Grassland Science, Georg-August-University Göttingen, Von-Siebold-Strasse 8, 37075 Göttingen, Germany; Centre for Biodiversity and Sustainable Land Use, Büsgenweg 1, 37075 Göttingen, Germany.

Animal welfare is integral to sustainable livestock production, and pasture access for cattle is known to enhance welfare. Despite positive welfare impacts, high labour requirements hinder the adoption of sustainable grazing practices such as rotational stocking management. Virtual fencing (VF) is an innovative technology for simplified, less laborious grazing management and remote animal monitoring, potentially facilitating the expansion of sustainable livestock production.

View Article and Find Full Text PDF

Web Real-Time Communications-Based Unmanned-Aerial-Vehicle-Borne Internet of Things and Stringent Time Sensitivity: A Case Study.

Sensors (Basel)

January 2025

Institute of Telecommunications, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classical transport solutions are not able to achieve end-to-end delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as a potential solution to this problem.

View Article and Find Full Text PDF

Target detection is a core function of integrated sensing and communication (ISAC) systems. The traditional likelihood ratio test (LRT) target detection algorithm performs inadequately under low signal-to-noise ratio (SNR) conditions, and the performance of mainstream orthogonal frequency division multiplexing (OFDM) waveforms declines sharply in high-speed scenarios. To address these issues, an information-theory-based orthogonal time frequency space (OTFS)-ISAC target detection processing framework is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!